GPS Phase Scintillation and HF Radar Backscatter Occurrence at High Latitudes

Paul Prikryl

Communications Research Centre Canada

P. T. Jayachandran, Sajan C. Mushini, Richard Chadwick

University of New Brunswick Fredericton
Outline

• Canadian High Arctic Ionospheric Network (CHAIN)
• Scintillation in auroral arcs, cusp and polar cap patches
• Climatology of phase scintillation and HF radar backscatter
 – MLT and magnetic latitude dependence
 – Geomagnetic activity dependence & Seasonal variation
• Future plans: CHAIN expansion & CASSIOPE/ePOP mission
Basic measurements and data products

- CADI **ionograms** 1-5min
- **convection** at 30-s res.
- GPS σ_ϕ and S_4 from 50-Hz data over 1 min intervals
- slant and vertical TEC
- 3D tomographic TEC maps
GPS TEC and scintillation data from Cambridge Bay elevation > 30°

\[\sigma_\phi = \sqrt{\Phi^2 - <\Phi>^2} \]

\[S_4 = \sqrt{<I^2> - <I>^2} / <I>^2 \]

Cambridge Bay based on 1-minute definitive data January 8, 2008

Cambridge Bay

NOAA/POES 2008 Jan 08

Cambridge Bay TEC

00:00 12:00 MLT
CHAIN: Cambridge Bay

σΦ

Cycle slips

05:00 05:20 05:40 06:00
CHAIN: Example of scintillation in the cusp

Taloyoak

SuperDARN Rankin Radar beam2
CHAIN: Example of scintillation in the cusp

SuperDARN Saskatoon Radar beam5

\[\sigma_\phi = \sqrt{\langle \phi^2 \rangle} - \langle \phi \rangle^2 \]
Polar cap patches observed by ionosondes in Resolute Bay and Eureka.

\[\sigma_\phi = \sqrt{\langle \Phi^2 \rangle} - \langle \Phi \rangle^2 \]
Polar cap patches observed by ionosondes and SuperDARN Rankin Inlet radar beam 8
Vertical TEC maps without & with CHAIN
Climatology of scintillation and HF radar backscatter

Constructed maps of percentage occurrence of

Phase scintillation:
\[N(\sigma_\varphi > 0.1 \text{ radians}) / N_{\text{total number of IPPs}} \]
(elevation > 30°, IPPs (at 350 km) binned on a grid 1 hour MLT \times 2.5° CGM latitude)

Ionospheric backscatter:
\[N(|V_{los}| > 100 \text{ m/s}) / N_{\text{total number of range gates}} \]
(Beam 8 range gates binned on a grid 1 hour MLT \times 1.5° CGM latitude)
CHAIN & SuperDARN

Canadian High-Arctic Ionospheric Network (CHAIN)
Mean TEC and phase scintillation occurrence 2008-2010
Phase scintillation occurrence in 2008-2010 for quiet & moderately disturbed days

CHAIN 2008–2010: SIGMA PHI >0.1 OCCURRENCE

QUIET DAYS n=970
less than 60% Kp/2

IQ=2

DISTURBED DAYS n=126
more than 60% Kp/2

IQ=4

(a) (b)
HF backscatter $|V_{LoS}| > 100$ m/s

Phase scintillation $\sigma_\phi > 0.1$
HF backscatter $|V_{LoS}| > 100$ m/s

Phase scintillation $\sigma_\Phi > 0.1$
2008-2009 SuperDARN/Sask: Ionospheric backscatter

(a) autumn equinox
(b) winter solstice
(c) spring equinox
(d) summer solstice
2008-2009 CHAIN: Phase scintillation $\sigma_\phi > 0.1$

(a) autumn equinox

(b) winter solstice

(c) spring equinox

(d) summer solstice
Phase scintillation climatology 2008-2010

CHAIN 2008–2010: SIGMA PHI > 0.1 OCCURRENCE
Seasonal variations of occurrence in the cusp and in the nightside auroral oval

Phase scintillation $\sigma_\phi > 0.1$
Seasonal variations of occurrence in the cusp and in the nightside auroral oval

Phase scintillation $\sigma_{\phi} > 0.1$

Ionospheric HF backscatter $|V_{LoS}| > 100$ m/s
SUMMARY

• 2008-2010: Maps as a function of CGM latitude and MLT of phase scintillation and HF backscatter
 – GPS phase scintillation strongest in the cusp and pre-midnight auroral oval
 – Statistically, scintillation collocated with HF backscatter
 – Geomagnetic activity dependence
 – Seasonal variation

• Nightside auroral phase scintillation (E region)
 – Intermittent (bursty) - collocated with auroral arc brightenings and substorms
 – Semiannual variation of occurrence: Maxima in equinoxes

• Cusp/cleft phase scintillation (F region)
 – Continuous, often lasting for several hours
 – Annual variation of occurrence: Maximum in late autumn/winter
Future plans

• CHAIN expansion
 Interhemispheric scintillation studies between Arctic and Antarctic

• CASSIOPE/ePOP mission
 New perspective on ionospheric irregularities
 In-situ plasma measurements for scintillation climatology modeling
Enhanced Polar Outflow Probe (e-POP)

Science

Plasma outflow: Micro-scale ion acceleration; wave particle interaction; auroral connection

Wave propagation: 3D structure of ionospheric irregularities; GPS radio occultation

Neutral escape: Neutral heating, non-thermal atmospheric escape

Mission Concept

High-resolution in-situ measurements
Radio wave propagation 3D studies
Fast imaging of meso-scale aurora

Mission Design

Polar orbit: 325×1500 km; 80° incl.
Agile, 3-axis stabilized platform
8-instrument plasma & field payload
Large onboard data storage (terabyte)
Fast telemetry downlink (>300Mbps)
New CHAIN proposal
CHAIN + European GISTMs

“Conjugate” GPS receivers in Antarctica
GPS receivers in Antarctica

Conjugate CHAIN + European GISTMs + SuperDARN
GPS receivers in Antarctica

Conjugate CHAIN + European GISTMs + SuperDARN