Toward Scatter Classification at Middle Latitudes

E. S. Miller and E. R. Talaat

A. F. L.
Geospace and Earth Science Group
Johns Hopkins University Applied Physics Laboratory

31 May 2011
SuperDARN Network

01 May 2011

013000 UT 01 May 2011

012300 UT

Miller, et al

SuperDARN 2011 — Mid-Latitude Scatter
Mid-Latitude SuperDARN

- Installed to observe expansion of convection pattern equatorward of traditional SuperDARN boundaries.
 - This happens with some regularity, but quiet conditions prevail.
- What is observed during quiet time?
- Signal to one is noise to another.
 - $\text{scatter} \in \{\text{ionospheric, ground}\}$ does not describe mid-latitude variability accurately.
 - $\text{scatter} \in \{\text{ionospheric, ground}\}$ algorithm does not describe mid-latitude physics accurately.
- Consider first climatological behavior.
2009 Wallops Island SuperDARN beam #7 backscatter power > 10 dB Climatology
Sub-Auroral Trough
Irregularities in the sub-auroral trough produce significant backscatter on many nights. (See Talaat, et al, poster.)

Meteor Echoes
Ablating meteors deposit trails of metallic ions in the E region. Sporadic-E layers also contribute to this prevalence.

Ground Scatter
Echoes returned off of the land or sea.
Propagation Mechanisms

Refraction
Propagation Mechanisms

Refraction

Field-Aligned Irregularities (FAI)
Propagation Mechanisms

- Refraction
- Field-Aligned Irregularities (FAI)
- Specular Reflection
- Density Structure
Meteor Scatter

- Essentially all SuperDARN meteor scatter is *specular*.
 - FAI typically observed by powerful IS-class radars.
- Meteor trails have short lifetimes (∼100 ms).
- Individual trails usually only appear in one range gate in space and time.
- Ensemble of many trails yields “cloud” of scatter at close ranges.
Sporadic-\(E\)

- Thin, dense, turbulent layer of metallic ions at \(E\)-region altitudes.
- Specular echoes, FAI, ground scatter, all possibilities.
- Separating specular echoes from FAI?

Raytracing

- Need not be complicated to be informative.
 - Parabolic or Chapman profiles driven by standard URSI coefficients. Or interpolate other datasets, use IRI (called directly from MATLAB).
 - Geomagnetic field (IGRF is easy in MATLAB).
 - Basic Appleton-Hartree magneto-ionic effects.
 - Loosely based on Jones-Stephenson code, but only for 2.5D.

- Find ground scatter location.
- Find $k \perp B \rightarrow$ possible FAI location.
- Drive with Millstone Hill Digisonde.
- Wallops beam #7 passes directly over Millstone.
Wallops Predictions
• Convert pretty (but useless) 3D plot to Virtual Range vs altitude.
Scatter Geolocation Tool

- Triple-hop sporadic-E (G-E_s) ground scatter 0000–0045 UT.
- Field-aligned irregularity (FAI) scatter from locations where $\mathbf{k} \perp \mathbf{B}$.
- Differentiate between FAI-F and G-E_s using Doppler velocity.

![Scatter Geolocation Tool Diagram]

15 May 2010 - Wallops Island SuperDARN beam #7 - 10.5 MHz

F ground scatter
Es ground scatter
F FAI scatter
E FAI scatter

Miller, et al. SuperDARN 2011 — Mid-Latitude Scatter
Discussion

• Mid-latitudes exhibit new and subtle sources of SuperDARN scatter.
 • Non-auroral FAI.
 • Sporadic-\textit{E}.

• Raytracing and phenomenology provide some guidance.
 • Not operational, but good for case studies.
 • Interferometer elevation can also help (not active at Wallops presently).
 • Raytracing in inhomogeneous ionosphere for irregularity studies.