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Relational geometric synthesis: 
Part 1 -framework 
John S Letcher Jr, D Michael Shook and Simon G Shepherd 

A novel object-orientated framework is proposed for 3D 
computer-aided design. Geometric objects including points, 
lines, curves, surfaces and solids are defined and constructed 
in a system which captures and retains many dependency 
relationships between objects, in a data structure equivalent 
to a directed graph. The primary advantage is automatic 
updating of the model, preserving relationships, when an 
underlying object is changed. Multiple types of parametric 
curves and surfaces and multiple levels of dependency are 
supported through a recursive program structure. Difficulties 
of surface-surface intersection and trimming are largely 
avoided, by provision of novel entities and relationships which 
permit construction of accurate and durable joins between 
surface objects. 

Keywords: surface modelling, relational geometry, computer- 
aided geometric design 

Geometric definition is an essential element in the 
design of practically any object to be manufactured. In 
CAD, mathematical representations of an object’s 
geometry are stored in computer memory and manipu- 
lated by the computer user. The end product of a CAD 
design can be scale drawings; NC instructions for auto- 
mated production of the object; or visualization or 
pictorial rendering of the object may be the entire 
objective. The CAD representation may also serve as a 
basis for analysis and evaluation of the design aside 
from visual aspects, e.g. finite-element method (FEM) 
stress analysis or computational fluid dynamic (CFD) 
flow analysis. 

We open by noting three areas of deficiency in 
conventional cm: 

failure to capture or retain relationships which are 
important to the designer; 
limitations on the variety of curve and surface types 
which are commonly supported; and 
difficulties associated with surface-surface intersec- 
tions and trimming of surfaces along such intersec- 
tions. 
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We are introducing a formal framework - ‘relational 
geometric synthesis’, or RGS - which addresses these 
three issues, and furnishes substantial solutions for 
them, with few negative side effects that we are aware 
of. Indeed, in our experience many other advantages 
accrue from the logical consistency of RGS, which 
make it easy to learn, to use, and to remember. 

In operation of a CAD program, each geometric ob- 
ject is created in sequence, either by execution of a 
user command, or as a result of reading data from a 
file. Almost every new object is positioned, orientated 
or shaped in some deliberate relationship to one or 
more already existing objects. For example, line B 
might be created in such a way that one of its end- 
points is at one end of an existing line A. However, this 
relationship is not retained by the CAD system; so if in 
some later revision line A is displaced, then line B will 
no longer connect to line A. A conventional CAD repre- 
sentation of geometry therefore consists of a large 
number of essentially independent simple objects, 
whose relationships are incidental to the manner and 
order in which they were created, but are not known to 
the program. 

If design always proceeded in a forward direction, 
loss of relationship information might be of little im- 
portance. One would start a project, add objects until 
the design was complete, and save the results. How- 
ever, it is well known that engineering design is only 
rarely a linear forward process. It is far more com- 
monly an iteration: design is carried forward to some 
stage, then analysed and evaluated; problems are iden- 
tified; then the designer has to retreat to some earlier 
stage, change some elements, and work forward again. 
It is typical that many iterative cycles are required, 
depending on the skills of the designer, the difficulty of 
the design specifications, and whatever constraints and 
optimization objectives may be present. In each for- 
ward stage, the designer will have to repeat many 
operations he previously performed (updating), in or- 
der to restore relationships disrupted by the revision of 
earlier design elements. 

Revision of an existing design to meet new require- 
ments is a common situation where similar problems 
are encountered. A change that alters an early stage of 
the design process requires at least one forward pass 
through all the subsequent design stages to restore 
disrupted relationships. If the relationships and the 
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sequence of design stages to achieve them have been 
lost, the updating process can be very difficult, error- 
prone and time-consuming. 

Some partial solutions to this problem are known. In 
most CAD programs, lines A and B can be created 
together as part of a ‘polyline’ entity; then their con- 
nectivity will be automatically maintained if any of 
their endpoints, including their common point, are 
moved. Himelstein’ has disclosed the concept of a 
‘sticky’ attribute which causes selected lines to remain 
connected to objects they are deliberately attached to. 
Draney* has disclosed a ‘relative point’ entity which is 
specified by its positional relationship (coordinate off- 
sets) from a selected point. 0osterholt3 has disclosed 
the concept of giving names to geometric solids, and 
positioning each solid in relationship to at most one 
other solid, in a tree structure of positional depen- 
dency. The graphics standard PHIGS4 provides simi- 
larly for optional naming of geometric structures, and 
use of structure names for positioning other structures. 
Ota et d5 have disclosed a CAD system in which some 
curve objects have names, and are used by name in the 
construction of some surface objects. In ‘constraint- 
based modelling” some kinds of relationships between 
objects are represented by constraint equations which 
are automatically satisfied during updates of the model. 

Sutherland’s Sketchpad project7 utilized stored refer- 
ences to point objects to establish durable connections 
between lines. Some elements of RGS may underlie 
AGPS (aerodynamics grid and panelizing system), a 
proprietary grid generation system at Boeing’-‘“. AGPS 
has at least some entities which reference other objects 
for their data, achieving at least one level of automatic 
updating. Reference to objects by name or address, and 
geometry languages, were also present in the APT tool 
programming system”, and in Armit’s Multipatch, 
Mulitobject, ICON and TAG projects’*.“. Snyder I4 
presents a procedural-language approach to CAD which 
supports rapid regeneration following changes in un- 
derlying objects. Each of these systems allows a script 
to be replayed in order to regenerate a complex 
geometry with parametric variations. 

Further, there are some examples of storing a multi- 
level relational structure of interobject dependencies, 
permitting selective updating of affected objects. 
Armit13 discusses this capability in a surface modeller, 
TAG. PADL-215 is a CSG solid modelling framework 
with this feature, and Gossard et ~1.‘~ describe a di- 
mension-driven polygonal solid modeller. 

In RGS every geometric object has a name, and a 
rich system of entities (primitives or abstract object 
types) is provided which reference other objects by 
lzame for their instantiation. The pervasive use of refer- 
ences to objects by name or identity allows the capture 
of many kinds of qualitative and quantitative relation- 
ships between objects, in a logical data structure having 
the form of a relation or directed graph. Using this 
structure, a program can automatically enforce all cap- 
tured relationships during updates of the model, cor- 
rectly propagating changes through the precise set of 
objects that are actually affected. This capability dra- 
matically transforms geometric design from a linear, 
disjoint process in which many design elements neces- 
sarily become frozen in non-optimal states, to a fluid, 
coherent process permitting changes in any part of the 

model at any time, thus greatly facilitating refinement 
and optimization of the entire design. 

Many different curve and surface entities are valu- 
able for different purposes in CAD. Circular arcs and 
surfaces of revolution are useful because they are natu- 
ral elements of, and easily manufactured by, rotating 
machinery. B-spline curves and surfaces are useful 
because they can be shaped into such a variety of 
forms, and because of the many useful and intuitive 
relationships they bear to their control points. Inter- 
polating splines are useful in other circumstances, when 
we need a free-form curve to pass through specified 
points. Standard airfoil curves are useful because foils 
made from them have predictable and desirable aero- 
dynamic characteristics17. Developable surfaces are 
useful because of the ease with which they can be 
formed from flat sheet materials. Numerous other use- 
ful curve and surface entities could be added to this 
list. 

On the other hand it is burdensome for a CAD 
program to support a large number of curve and sur- 
face types, because their behaviours and data require- 
ments vary so widely. It is generally accepted that the 
programming cost of supporting N entities increases 
much more rapidly than in 
lar, it has been suggested 18 

roportion to N. In particu- 
that support of N surface 

types requires implementation of N(N + 1)/2 
surface-surface intersection routines. Even the hand- 
ful of useful curves and surfaces mentioned in the 
preceding paragraph have not previously been sup- 
ported by any single CAD system known to the authors. 

One known partial solution to this problem is to 
support only a single surface type, which has sufficient 
degrees of flexibility to encompass a useful set of 
simpler surfaces as special cases. Nonuniform rational 
B-spline (NURBS) surfaces have often been proposed to 
fill this role’s, since they encompass the earlier BCzier 
and B-spline formulations, and by special choice of 
knots and weights they can exactly represent arcs of 
conic sections, especially circles. Disadvantages of this 
approach include the obscure relationship between the 
selection of order, knots, weights and control points to 
achieve a desired curve; the large quantity of data 
required to define even a simple surface such as a 
circular cylinder; non-uniformity of resulting parame- 
terizations; and the continuing usefulness of some 
curves and surfaces which lie outside the compass of 
NURBS. 

A second main objective of relational geometric syn- 
thesis is therefore to provide a CAD surface modelling 
environment in which a wide variety of curve and 
surface types are supported for utility, convenience and 
tlexibility. This is accomplished by a combination of 
polymorphism and recursion. 

In CAD surface and solid modelling systems, intersec- 
tions between surfaces often account for much of the 
complexity in both the program and the user interface, 
and are a major source of unreliability. In a typical 
application, surface Y is constructed, then surface 2 is 
constructed in such a way that it deliberately intersects 
surface Y. The next step is usually to find the curve of 
intersection of Y and Z, so portions of Y and/or 2 
which extend beyond the intersection may be discarded 
(trimmed). 

The problem of intersection of two surfaces is inher- 
ently difficult, for several reasons. Finding any single 
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point of intersection requires solution of three simulta- 
neous, usually non-linear, equations. These equations 
will be ill-conditioned if the intersection is at a low 
angle. The intersection may consist of isolated points, 
simple arcs, closed curves, self-intersecting curves, or 
multiple combinations of these elements. The surfaces 
might indeed coincide over some finite area. Once a 
curve of intersection is found, it is often difficult to 
indicate correctly which portions of which surfaces are 
to be discarded. After trimming, a parametric surface 
patch may no longer be topologically quadrilateral, so 
it can no longer be conveniently parameterized. 

A third main objective of RGS is therefore to pro- 
vide a CAD surface modelling environment in which the 
difficulties of intersecting and trimming of surfaces are 
largely avoided, by providing convenient ways to con- 
struct surfaces which join one another accurately in the 
first place, with joins that are automatically maintained 
during updates of the model. This is accomplished by 
providing transfinite surface entities which interpolate 
arbitrary edge curves; by use of object names for points 
and curves so two surfaces can reference the same 
curve or set of points as edge data; and by providing a 
class of curve entities embedded in surfaces (‘snakes’). 

It is noted that the novel features of RGS are the 
subject of patent applications in several countries. The 
PC-based surface modeller MultiSurf (R) from Aero- 
Hydro, Inc. is an initial commercial implementation of 
RGS. MultiSurf currently supports 20 point entities, 18 
curves, 13 snakes, and 22 surface entities, in a highly 
interactive and visual 3D environment. 

RELATIONAL GEOMETRY 

For purposes of this paper, a 3D design space is con- 
templated, utilizing Cartesian coordinates (x, y, 2) for 
the location of points. Our focus is primarily on surface 
rather than solid modelling. Of course, the modelling 
of surfaces, and particularly of accurately conjoined 
multiple surface patches, relates strongly to B-rep solid 
modelling, so we believe RGS has a large potential in 
that area. At this time we see little relation of RGS to 
CSG solid modelling. RGS does, however, suggest an 
alternative approach to solid modelling which will be 
developed in Part 2. 

Definition: An entity is an abstract type of geometric 
object supported by the system, and requiring a specific 
set of data for its actualization. 

Common CAD entities are the point, the line, the arc, 
the BCzier patch. An entity can be thought of as a 
blank form, with spaces to fill in data such as name, 
colour, names of supporting objects, etc. 

Definition: An object is an instance of an entity; for 
example an absolute point, colour yellow, located at 
(1,2, -3). An object can be thought of as a completely 
filled-in entity form. 

Comment: In CAD usage, in general, we find the words 
‘object’ and ‘entity’ applied fairly interchangeably to 
both of the two concepts that we are distinguishing. 
Dictionaries likewise make little distinction between 
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the words. We early encountered a need to have dis- 
tinct names for the two separate concepts, and our 
original choice (as stated above) stuck. We are aware of 
precedent for use of the word ‘primitive’ for what we 
are calling an ‘entity’. 

The use of an object name as data for another object 
establishes a dependency relationship between the two 
objects. In this relationship, the object whose name is 
used is called the supporting object or support; the 
object which uses the name as data is called the depen- 
dent object or dependent. The dependency relationship 
is directional. The complete set of dependency rela- 
tionships between the objects in a model has the logical 
form of a relation or directed graph (digraph)lg. Each 
node of the dependency digraph represents an object; 
each directed edge indicates the dependency of one 
object on another (see Figure 2 below). 

To date, implementation of RGS are restricted to 
acyclic directed graphs. Bidirectional dependencies (for 
example, mutual tangency between two surface objects) 
would open some interesting possibilities, and compli- 
cations, which we have not explored. Most forms of 
cyclic dependency we have contemplated result in a 
singular model; i.e. either no solutions or an infinite 
number of solutions. 

The dependency relationship can take many forms. 
For example, a relative point depends on one other 
point object for its location. A B-spline curve depends 
on each of the point objects which are its control 
points. A lofted surface depends on each of the curve 
objects through which it is lofted, and it also depends, 
in turn, on each point object used in the definition of 
those curves. Dependency can extend to many levels. 
An object can depend on many other objects, and can 
in turn support many other objects. 

Some objects may be defined in an absolute sense, 
having no dependency on any others. For example, an 
absolute point is specified solely by its coordinates X, 
Y, 2. 

Use is made of curve and surface parameters as part 
of the data for some entities. For example, a point 
constrained to lie on a curve (a bead) can be located by 
naming the curve and giving a specific value for t. A 
point constrained to lie on a surface (a magnet) can be 
located by naming the surface and a specific pair of 
parameter values for u, u. A snake is a parametric 
curve in the two-dimensional u, u parameter space of 
its supporting surface, mapped onto the supporting 
surface. 

Definition: A logical model is any valid collection of 
objects, i.e. a set of valid objects in which all required 
dependencies are satisfied, without cyclic dependen- 
cies. 

Definition: An absolute model is a geometric represen- 
tation computed from a logical model, in which all 
objects are located by their absolute coordinates. 

The calculation of absolute models from logical mod- 
els is the primary computational task in RGS. 

Those qualitative and quantitative properties of a 
model which are captured and enforced by utilizing the 
data structure of dependencies are referred to as 
durable properties. 
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CLASSIFICATION OF RGS ENTITIES 

It is useful to classify and define entities first in terms 
of their dimensionality and embedding, and second in 
terms of their primary dependencies: 
Points are zero-dimensional objects. 

An absolute point depends on nothing. 
A relative point depends on another point. 
A bead is a point embedded in a curve. 
A magnet is a point embedded in a surface. 
A ring is a point embedded in a snake. 

Curves are one-dimensional objects. 

A line depends on two points. 
An arc depends on three points. 
A B-spline curve depends on two or more points. 
A C-spline curve interpolates two or more points. 

Snakes are one-dimensional objects, parametric curves 
embedded in a parametric surface. Any snake depends 
on its surface; in addition: 

A line snake depends on two magnets or rings. 
An arc snake depends on three magnets or rings. 
A B-spline snake depends on two or more magnets 
or rings. 
A C-spline snake interpolates two or more magnets 
or rings. 

Surfaces are two-dimensional objects. 

A translation surface depends on two curves. 
A ruled surface depends on two curves. 
A revolution surface depends on one curve and one 
line. 
A C-lofted surface interpolates two or more curves. 
A blended surface depends on four curves. 
A B-spline surface depends on an array of points. 

The above list of entities is intended to be illustrative, 
but by no means complete. Additional entities can 
easily be suggested for any of these classes. 

A different useful classification may be made in 
terms of the support role each entity class can fulfil: 

When a point is required, any point object will serve. 
When a bead is required, only a bead will serve. 
When a magnet is required, a magnet or ring will 
serve. 
When a ring is required, only a ring will serve. 
When a line is required, only a line will serve. 
When a curve is required, any point, line, curve or 
snake will serve. 
When a snake is required, any snake, magnet or 
ring will serve. 
When a surface is required, only a surface will serve. 

These rules are based on two precepts: 

1 A supporting object must have the requisite proper- 
ties to durably fulfil its role. Thus, a point which 
currently happens to lie on a surface does not qualify 
as a magnet, because in some future revision it may 
no longer be on that surface. A curve or surface 

2 

cannot serve as a point, because it generally will 
consist of multiple points. 
Degenerate objects are permitted; e.g. a point used 
as a curve simply returns 
any value of parameter, t. 

the same coordinates for 

A SIMPLE EXAMPLE 

One useful form of representation of a logical model is 
a text file having one record for each object. This file 
maps one-to-one into the program’s internal data 
storage. The file format is introduced here, and 
elaborated in a later section. An object record includes 
the entity type, the object name, various object at- 
tributes such as colour and visibility, and any other 
variable data required to actualize the object, pre- 
sented in a predefined order peculiar to the entity. For 
example, the prototypes or forms for the absolute point 
entity and the line entity are, respectively: 

AbsPoint name colour G’s x y z 
Line name colour uis ndt relabel point1 point2 

where 

colour = a colour index 

cis = visibility index (0 means invisible) 

ndt = number of divisions in t for wireframe displa 

relabel = provision for reparameterization 

( ‘ * ’ means default parameterization) 

The following set of five records is an RGS solution 
to the ‘line A-line B’ problem discussed above (Figure 
I): 

AbsPoint Al 14 1 1. 1. 3.; 

AbsPoint A2 14 1 2. 1. 3.; 

Line line-A 13 1 1 * Al A2; 

AbsPoint B2 14 1 2. 3. 3.; 

Line line-B 13 1 1 * A2 B2; 

This model contains five objects: three absolute points 
(named ‘Al’, ‘A2’, ‘B2’) and two lines (named ‘line-A, 
‘line-B’). This data clearly records the intention that 
‘line-B’ start where ‘line-A’ ends, viz. at point ‘A2’. 
The dependency of both Lines on point ‘A2’ creates 
the durable connection. 

The following record adds one more object to this 
example: AbsBead bead-B 12 1 line-B 0.7. This cre- 
ates a visible point, of colour 12, constrained to remain 

I z 

Figure I A simple relational model consisting of four points and 
two lines 
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Fire 2 The directed graph of dependencies for the model of 
Figure I 

on ‘line-B’, at a parameter value of 0.7, i.e. 70% of the 
way from point ‘A2’ to point ‘B2’. Following any change 
in ‘line-A’, ‘bead-B’ will still lie on ‘line-B’, in the 
same relative location. The dependency of ‘bead-B’ on 
‘line-B’ creates the durable relationship. The digraph 
for this model is shown in Figure 2. 

For purposes of output or display, an absolute model 
will be computed from the logical model. For this 
example, the absolute model would consist of: 

a point, colour 14 at (1.) 1.) 1.) 

a point, colour 14, at (2., l., 1.) 

a line, colour 13, from Cl., 1.) 1.) to (2., 1.) 1.) 

a point, colour 14, at (2., 3., 1.) 

a line, colour 13, from (2., 1.) 1.) to (2., 3 ., 1.) 

a point, colour 12, at (2., 2.4,l.I 

Now suppose that the example model is changed by 
moving point ‘A2’ to a new position (2., l., 2.). This is 
accomplished by changing one element in one record 
of the logical model: 

AbsPoint A2 14 1 2. 1. 2.; 

Following this change, the updated absolute model 
(Figure 3) would consist of: 

a point, colour 14 at Cl., 1.) 1.) 

a point, colour 14, at (2., 1.) 2.) 

a line, colour 13, from (l.,l.,l.) to (2.,1.,2.) 

a point, colour 14, at (2.,3., 1.) 

a line, colour 13, from (2., 1.,2.) to (2., 3., 1.) 

a point, colour 12, at (2.,2.4,1.3) 

The connection of ‘line-A’ and ‘line-B’ has been auto- 
matically maintained; ‘bead-B’ is still located on 
‘line-B’, and in the same proportional position, i.e. at 
70% of the length of ‘line-B’. This brief example 
illustrates the automatic updating of the model that is 

X 

Figure 3 The model of Figure I, following a change in position of 
point ‘A2 
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made possible by utilization of the data structure of 
dependency relations. 

LOGICAL MODEL FILE 

The concept of the logical model file was introduced in 
the preceding section; further details are presented 
here. 

Each object description begins with a keyword speci- 
tying the entity, followed by the object name. Most 
objects have a colour attribute, currently selecting one 
colour from a palette of 16. Most objects have a visibil- 
ity attribute; this is a byte in which the bits have 
different significance for different classes of entities, as 
follows: 

points: 
bit 1: point is visible 

curves, snakes: 
bit 1: polyline is visible 
bit 2: tick-marks displayed at uniform parameter in- 

tervals 
bit 3: polygon connecting control points or magnets 

is visible 
surfaces: 

bit 1: parameter lines in u-direction are visible 
bit 2: parameter lines in pdirection are visible 
bit 3: (reserved) 
bit 4: boundary is visible 
bit 5: net connecting control points is visible 

The following is a representative set of entity de- 
scriptions, sufficient for the example developed at the 
end of the paper. Many other entities will be detailed 
or proposed in Part 2 of this paper. 

Point class 

Absolute point 
AbsPoint name colour vis x y z. 

x, y, z are the absolute coordinates of the point. 

Relative point 
RelPoint name colour ti point a5 dy dz. 

dx, dy, dz are the coordinate offsets from point. 

Absolute bead 
AbsBead name colour ti curue t. 

t is an absolute parameter value on curw. 

Relative bead 
RelBead name colour h bead dt. 

dt is the parameter offset from bead. 

Absolute magnet 
AbsMagnet name colour ~6 surface u v. 

u, v are the absolute parameters on surface. 
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Relative magnet 
RelMagnet name colour [is magnet du dc. 

du, drl arc the parameter offsets from magnet. 

Absolute ring 
AbsRing name colour LZS snake t. 

t is an absolute parameter value on snake. 

Relative ring 
RelRing name colour ris ring dt. 

dt is a parameter offset from ring. 

Curve class 

All curves are parameterized from 0 to 1. All curve 
prototypes include ndt, specifying the number of divi- 
sions in t for wireframe display, and a ‘relabel object’ 
which permits reparameterization of the curve, as de- 
tailed in Part 2. Some curves additionally require speci- 
fication of ‘type’ parameters. 

Line 
Line name colour his ndt relabel point1 point2. 

The line is a straight line from pointl (x,) to point2 
(x,>: x(t) = (1 - t)x, + tx,. 

Circular arc 
Arc name cobur tis ndt relabel type point1 point2 points. 

For all types, the curve is a circular arc lying in the 
plane of the three points. In some cases the arc can 
degenerate to a line (e.g. Type 1 with collinear points) 
or to a point (e.g. Type 2 with point1 and point2 
coincident). In all cases parameterization is uniform 
with respect to arc length. 

Type 1: The arc interpolates the three points in 
sequence. (Error if any two points coincide.) 

Type 2: The arc starts at xi, has centre at x2, and 
ends on the line from x2 to x3. (Error if the points are 
collinear.) 

Type 3: The arc is a full circle starting and ending at 
. x,, with centre at x2, the direction is such that the 

closest point to x3 has r < .5. (Error if the points are 
collinear). 

Type 4: The arc runs from x, to x3, and at x, is 
tangent to the line from x, to x2. (Error if points 1 and 
2 coincide). 

Type 5: The arc runs from x, to x3, and at x3 is 
tangent to the line from x2 to x3. (Error if points 2 and 
3 coincide). 

B-spline curve 
BCurve name colour his ndt relabel type (point1 
point2. . . pointN} . 

type specifies the spline order k: k = type + 1, i.e. 
1 = linear, 2 = quadratic, etc. 

The named points are the control points in sequence. 
(Braces are used to contain a variable-length list of 
supports.) A point is evaluated by using B-splines of the 
specified order as weights applied to the N control 

points”“, 71: 

x(t) = 2 x;&(t) 
i= 1 

C-spline cuwe 
CCurve name colour cis ndt relabel type (point1 
point2. . pointN). 

type specifies the spline order k: k = type + 1, i.e. 
1 = linear, 2 = quadratic, etc. 

The named control points are interpolated in se- 
quence by the curve. The curve is a parametric spline 
with chord-length parameterization, knots at the data 
points (odd type) or midway between data points (even 
type), and not-a-knot end conditions*‘. An error occurs 
if two consecutive control points are coincident. 

Sub-curve 
SubCurve name colour vis ndt relabel bead1 bead2. 

The subcurve is the portion of the basis curve x,(. ) 
between the two beads, reparameterized to the interval 
10,ll: 

x(t)=x,[(l-t)t,+tt,l 

Relative curve 
RelCurve name colour uis ndt relabel curw point1 point2. 

The relative curve is a copy of the basis curve xc(. >, 
linearly mapped to span the two endpoints x, and x2: 

x(t) =x,(t) + (1 -t> [x, -x,(O)] + t[x, - x,(l)1 

Snake class 

All snakes are parameterized from 0 to 1. A snake is 
evaluated by first locating a point w = {u, U) in the 
parameter space of the surface, then evaluating the 
surface with those parameter values. In general, the 
supporting surface for the snake is deduced from the 
supporting magnets or other surface-based objects sup- 
porting the snake. It is an error condition if these 
supporting objects do not all lie on the same surface. 
Like curves, all snake prototypes include ndt, specifying 
the number of divisions in t for wireframe display, and 
a ‘relabel object’ which permits reparameterization of 
the snake. Some snakes additionally require specifica- 
tion of ‘type’ or ‘order’ parameters. Snake prototypes 
are in fact completely parallel to the corresponding 
curve prototypes. 

Line snake 
LineSnake name colour vis ndt relabel magnet1 magnet2. 

The LineSnake is a straight line in u, c’ parameter 
space from magnet1 (w, = {u,, u,)) to magnet2 (w? = 
I+, L:*J): 

w(t) = (1 - t)w, + tw, 

Arc snake 
ArcSnake name colour vis ndt type relabel magnet1 mag- 
net2 magnet3. 
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Types 1 to 5 are the same as for Arc, above. The 
circular arc is drawn in the u, u parameter space and 
then mapped onto the surface. 

B-spline snake 
BSnake name colour vis ndt relabel type (magnet1 mag- 
net 2. . . magnetN}. 

type specifies the B-spline order: 1 = linear, 2 = 
quadratic, etc. The named magnets are the control 
points in sequence. A point is evaluated by using B- 
splines of the specified order as weights applied to the 
control magnets”, ‘r : 

w(t) = 5 w;B;(t) 
i=l 

Figure 4 illustrates a BSnake object, dependent on a 
surface object and multiple magnet objects. 

C-spline snake 
CSnake name colour tis ndt relabel type (magnet1 mag- 
net2. . . magnetN}. 

type specifies the spline order: 1 = linear, 2 = 
quadratic, etc. The named magnets are interpolated in 
sequence. The snake is a parametric spline of the 
specified type in the u, u parameter space with chord- 
length parameterization, knots at the data points (odd 
type) or midway between data points (even type), and 
not-a-knot end conditions ‘O. An error occurs if consec- 
utive magnets are coincident. 

Sub-snake 
SubSnake name colour vis ndt relabel ring1 ring2. 

The subsnake is the portion of the basis snake w,( . ) 
between the two rings, reparameterized to the interval 
LO, 11: 

w(t)=w,[(l-t)t,+tt,] 

Surface class 

All surfaces are parameterized from 0 to 1 in both u 
and u directions. All surface prototypes include four 
subdivision parameters which control the display of a 
wireframe mesh: 

ndu = no. of divisions in u-direction 
nsu = no. of subdivisions in u-direction 
ndu = no. of divisions in u-direction 
nsu = no. of subdivisions in u-direction 

and one normal orientation parameter: 

ior = 0 or 1 

Figure 4 A B-spline snake supported by magnets embedded in a 
parametric surface object 
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(With ior = 0, the unit normal n is oriented so that the 
scalar triple product I dx/du dx/d u nl is positive; 
ior = 1 reverses the normal orientation. This provision 
anticipates applications in which the inside/outside 
orientation of a surface is significant.) 

There are several species of ‘lofted surface’ which 
form a subclass with important common properties. 
Each derives its name and behaviour from a type of 
curve. Each is supported by two or more curves x,(t), 
i=l P”‘, N called master curws. A surface point x(u, U> 
on a lofted surface is obtained in three stages: (1) from 
each ‘master curve’ i take the point xi(u); (2) form the 
‘longitudinal’ curve of specified type which uses the 
xi(u) in sequence for its data; (3) evaluate the longitu- 
dinal curve at parameter U. Each ruled surface inter- 
polates its first and last master curves, along the u = 0 
and u = 1 edges, respectively. 

Ruled surface 
RuledSurf name colour uis ndu nsu ndv nsv ior curE1 
curw2. 

The surface is formed from the two curves y,(t), yz(t) 
by linear interpolation: 

x(u, U) = (1 - U) y,(u) + uy,(u) 

The ruled surface belongs to the subclass of lofted 
surfaces, and could as well be called a ‘line-lofted 
surface’. 

Arc-lofted surface 
ALoftSurf name colour vis ndu nsu ndv nsu ior type 
curwl curw2 curw3. 

A surface point x(u, v) is obtained in three stages: (1) 
from each ‘master curve’ i take the point xi(u); (2) 
form the circular arc curve of specified type which uses 
the xi(u) as data points; (3) evaluate the arc curve at 
parameter u. An error will occur in stage (2) if the 
three points are invalid data for an arc curve. 

B-lofted surface 
BLoftSurf name colour vis ndu nsu ndu nsv ior type 
kurwl curw2.. . curuel\r). 

A surface point x(u, u) is obtained in three stages: (1) 
from each master curve i take the point xi(u)1 (2) form 
the B-spline curve of specified order which uses the 
x,(u) in sequence as control points; (3) evaluate the 
B-spline curve at parameter u. 

When the master curves are all B-spline curves of 
the same order, the same number of vertices, and 
uniform knots, the B-lofted surface is identical to the 
tensor-product B-spline surface20,21 using the same ar- 
ray of control points. Otherwise, the B-lofted surface is 
a useful transfinite generalization of the B-spline sur- 
face. 

C-lofted surface 
CL,oftSurf name colour ti ndu nsu ndv nsv ior type 
{cur& curw2.. . curuehr). 

A surface point x(u, II) is obtained in three stages: (1) 
from each ‘master curve’ i take the point Xi(U); (2) 
form the C-spline curve of specified type which inter- 
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polates the x,(u) in sequence; (3) evaluate the C-spline 
at parameter L’. An error condition will occur in stage 
(2) if x,(u) = x,+,(u) for any i. 

Developable surface 
DevSurf name colour cis ndu nsu ndc nsc ior curcel 
curw2. 

A developable surface is formed spanning the two 
basis curves y,(t,), yz(f2) by finding ruling lines which 
join the two edges and satisfy the additional 
condition”,“-‘: 

f<t,, t,> = I dy,/dt, dy,/dt, y,(t, 1 - y2(tZ)l = 0 

The c parameter is the fractional distance along any 
ruling from edge 1 to edge 2. 

Translation surface 
TranSurf name colour ris ndu nsu ndl, nsr> ior curreel 
curw2. 

The surface is formed from the two curves y(t ), z(t) 
by addition: 

x(u, L’) = y(u) + z( r1> - z(O) 

i.e. a copy of Z(V) is translated along y(u). 

Revolution surface 
RevSurf name colour cis ndu nsu ndc nsL: ior curw axis 
angle1 angle2. 

axis has to be the name of a line object. 
The surface point at u, L’ is constructed by taking a 

point y(u) from cur.ve, then rotating it through an angle 
0 = (1 - LI)O, + ~0~ about the axis line. 

Blended surface 
BlendSurf name colour ~'1's ndu nsu ndc nsv ior curwl 
curr?e2 curw3 curwl. 

The surface is a bilinear Coons patch” constructed 
from the four curves. The equation for locating a 
surface point is: 

x(u, I’) = (1 - L’)X,(U) + VX,(l ~ u) 

+ (1 - u)x,(l - I’) + ux2( L’) 

- (1 - UHl - L’Hx,(O) +x,(1)1/2 

- u(l - L’l[X,(l) +x,(0)1/2 

- uc[x,(l) +x,(0)1/2 

- (1 - U)1’[X?(l) +x,(0)1/2 

The four basis curves nominally join end-to-end in a 
closed loop. If the curves do not all meet in this 
fashion, a surface patch is still formed, but it does not 
interpolate all its edges. Triangular patches can be 
formed by having one degenerate side, i.e. one of the 
four curves is just a point. 

Sub-surface 
SubSurf name colour [is ndu nsu ndc nsc ior snake1 
snake2 snake3 snakel. 

The sub-surface is a bilinear Coons blending of four 
snakes lying on a surface xs( .I (Figure 5). The equation 
for locating a surface point is: 

x(u, u) = x,(w), where 

Figure 5 A sub-surface bounded by four snakes embedded in a 
surface object 

w(u, 1:) = (1 - c>w,(u> + cw,(l -u) 

+ (1 - u)w,(l - L’) + uw,(c) 

- (1 - UN1 - c)[w,(Ol + w,(l)]/2 

- u( 1 - c)[w,( 11 + w,(O)]/2 

- uc[w,(l> + w,(O)]/2 

- (1 - u)c[w,(l) + w,(O)]/2 

The four basis snakes nominally join end-to-end in a 
closed loop. If the curves do not all meet in this 
fashion, a surface patch is still formed, but it does not 
interpolate all its edges. Triangular subsurface patches 
can be formed by having one degenerate side, i.e. one 
of the four snakes is just a magnet. 

In a logical model file, each object is represented by 
a single text record conforming to the format specified 
in the above entity definitions. White-space characters 
separate tokens, but are not otherwise significant. An 
object record is terminated by a semicolon. The text 
file is terminated by the keyword ‘EndModel’. Remarks 
can be included in the text file by use of the keyword 
‘Rem’. Any object must be defined before it can be 
used as support for another object. 

Internal to the program, objects may be referenced 
by serial numbers corresponding to their sequence in 
the input data file, or sequence of creation, or other 
unique index numbers, or by pointers to memory. Re- 
quiring that all references be to previously defined 
objects (lower serial number) is a simple way to exclude 
circular dependencies (digraph cycles). The organiza- 
tion of internal storage of the logical model may in- 
clude a data structure representing the dependency 
digraph, to be used to control updating of the absolute 
model. 

Because model files store only the logical model, 
requiring only about 30-60 characters per object, they 
are very compact. A model of 200 objects, which we 
currently view as moderately complex, would probably 
have a file size under 10 kB. In binary form, the same 
data would be about 50% smaller again. 

The logical model file syntax can be viewed as a 
procedural geometric programming language. The en- 
tity keyword is a command to create an object of 
specified type (invocation of a function), and the vari- 
able data items that follow are function arguments. 
This view of the model file will be further explored in 
Part 2. 
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SUPPORT OF MULTIPLE CURVE AND 
SURFACE TYPES 

The second principal objective of RGS is achieved by 
polymorphism and recursive program structure. The 
object orientation of RGS suggests an object-orien- 
tated implementation, but in fact all operational imple- 
mentations to date have been via procedural languages. 

To make these ideas more specific, we focus on the 
support of multiple curve types in a procedural imple- 
mentation. First, in RGS all curves are members of a 
class which embodies many common properties, e.g. a 
common range of parameterization, 0 to 1. All curve 
objects are accessed through a single ‘generic’ function 
‘Curve’, whose arguments include the identity (or me- 
mory location) of a curve object and a list of parameter 
values, and which returns a list of 3D points sampled 
from the specified curve at the specified parametric 
positions. From the point of view of a routine that 
needs to use points taken from a curve, all curves are 
equivalent; the routine calling ‘Curve’ does not need to 
know what kind of curve it is interrogating. ‘Curve’ 
must examine the data of the specified curve object, 
determine what kind of curve it is, and branch to the 
routine for evaluating this particular kind of curve from 
its particular data. LaBozzetta et al. have previously 
employed this polymorphic approach to supporting 
multiple surface types in 13G, a geometry system for 
CFD gridding24. 

Second, to allow for the possibility that objects used 
to support a curve are other curves, or depend on other 
curves, it is essential that the generic ‘Curve’ routine 
be programmed recursively, so it can call itself, or be 
called by routines which it has called. In similar fash- 
ion, generic recursive ‘Point’ and ‘Surface’ routines 
must be provided, as well as generic recursive routines 
for evaluating some other entity classes we have not yet 
introduced. 

The three ‘generic’ class-level or primary procedures 
named ‘Point’, ‘Curve’ and ‘Surface’ are the interface 
to any application program requiring absolute geomet- 
ric information from the model. These have input and 
output arguments as follows: 

. Point 
in: a point object 
out: absolute coordinates X, y, z 

. Curve 
in: a point, line, curve or snake object 
list of t parameter values 
out: list of absolute point coordinates x, y, z 

. Surface 
in: a surface object 

list of z4 parameter values 
list of u parameter values 

out: array of absolute point coordinates X, y, z 

The object passed to these procedures could be speci- 
fied by name, index, serial number, or address pointer; 
or could be passed ‘by value’, i.e. a data structure 
which includes the entity type. Any input list of 
parameter values could have only a single entry, if only 
one point on the object is to be evaluated. 

Three other class-level primary procedures return 
parameter values which are required in the operation 
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of Point, Curve and Surface for some entities: 

. Bead 
in: a bead or ring object 
out: supporting curve or snake; 

parameter value t 
l Magnet 

in: a magnet or ring object 
out: supporting surface; parameter values 24, u 

. Snake 
in: a snake, magnet or ring object 

list of t parameter values 
out: supporting surface; 

array of parameter values u, u 

Module ‘Point’ determines what kind of point object 
it is evaluating, and branches to the appropriate proce- 
dure for evaluating that type of point. Similarly, ‘Curve’, 
‘Snake’ and ‘Surface’ are basically branches to their 
constituent secondary routines, one for each supported 
entity in the class. 

‘Line’, ‘LineSnake’ and ‘RuledSurface’ routines share 
a common ‘LineMath’ routine; similarly, the other 
curves, snakes and lofted surfaces share common sec- 
ondary math routines, able to operate with either 2D 
data (when called for a snake) or 3D data (when called 
for a curve>. It is obvious now how easily a new para- 
metric curve, snake, or surface entity can be added to 
the system; it requires only: 

1 defining the prototype for the new entity; 
2 addition of one secondary routine implementing the 

new entity; and 
3 slight modification of one primary procedure, adding 

a branch to the new secondary routine. 

Clearly, the effort of supporting N curves or surfaces is 
only O(N). 

Evaluation of most entities requires calls to other 
primary procedures; for example, a bead requires eval- 
uation of a curve; a snake requires evaluation of a 
surface. 

Support of ‘relative’ entities of all types evidently 
opens the possibility of recursion. For example, to 
locate a relative point, the program first needs to locate 
the basis point, no matter what kind of point object the 
basis point is. Thus, ‘RelativePoint’ must be able to call 
‘Point’; ‘RelativeBead’ must be able to call ‘Bead, etc. 

Other potential instances of recursion arise during 
evaluation of curves and surfaces. For example, ‘Line’, 
‘At-c’, ‘BCurve’ and ‘CCurve’ all need to evaluate their 
supporting points, by a series of calls to ‘Point’. Any 
such point object could be a bead on another curve. 
‘LineSnake’, ‘ArcSnake’, ‘BSnake’ and ‘CSnake’ need 
to evaluate u, u parameters of each of their supporting 
magnet objects, by a series of calls to ‘Magnet’. Such a 
supporting magnet could be a ring on another snake. 
The several surface routines need to evaluate various 
point, curve, snake or surface supports, according to 
their individual constitutions; these are all done through 
calls to the primary procedures. 

Further cycles of recursion occur when, for example, 
one curve supporting the surface being evaluated is a 
snake on another surface. In this case the call sequence 
passes through ‘Surface’ twice. It is easy to think up 
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cases with arbitrarily long chains of dependency. All 
such recursive possibilities are accommodated by the 
program structure outlined above. Without recursion, 
the program complexity and size would grow extremely 
rapidly with the allowable depth of dependency; with 
recursion, only stack space is required to indefinitely 
extend the permitted depth of dependency. 

The same polymorphism can be accomplished in an 
object-orientated language by subclassing. In c+ +, the 
abstract class Curve has a pure virtual member func- 
tion Evaluate which receives a curve object and returns 
a tabulation of point coordinates. Each specific curve 
entity, implemented as a subclass of curve, has its own 
peculiar set of data members, and provides its own 
version of the Evaluate member function. 

AVOIDANCE OF SURFACE-SURFACE 
INTERSECTION AND TRIMMING 

The third principal objective of RGS is achieved by 
utilizing the dependency relationships outlined above, 
and providing certain generally useful snake and sur- 
face entities. Two distinct problems are addressed here: 
(1) coercing two surface objects Y and Z to accurately 
share a common edge, and (2) coercing one surface 
object Z to end accurately on another surface object 
Y, along a curve which is not necessarily an edge of Y. 

Durable common edges between surfaces may be 
achieved by using common data to define the adjoining 
edges (Figure 6). For example, if the two surfaces are 
blended surfaces, whose data includes boundary curves, 
all that is required is to use the same curve object for 
the corresponding edges of the two surfaces. Two lofted 
surfaces of the same type will accurately join in the loft 
direction if their corresponding master curves have 
common endpoints along the edges where they adjoin. 
The subcurve entity allows construction of common 
edges where commonality does not extend along a 
complete edge of either or both surfaces. 

Alternatively, a surface Z having an edge which 
accurately and durably lies on another surface Y can be 
achieved by defining a snake S on Y, then using S for 
an edge curve in the subsequent specification of Z 
(Figure 7). This arrangement also provides an alterna- 
tive solution for common edges, when S is specified to 
be a linesnake lying along all or part of one edge of Y. 

Figure 6 Surfaces accurately and durably joined by dependency on 
common edge curves 

Figure 7 A surface accurately and durably joined to a snake 
embedded in another surface 

It may be noted that two of these methods of forming 
conjoined surfaces are in the pattern of designing the 
curve of intersection first, then attaching the surfaces 
to it. This is the inverse of the usual intersection-trim- 
ming problem, and it should be no surprise that it is far 
simpler to execute. 

DETAILED EXAMPLE 

Table 2 is a text representation of an example logical 
model utilizing a variety of point, curve and snake 
objects, and six interconnected surface objects of vari- 
ous types, as defined and outlined above. Figure 8 is a 
wireframe representation of the resulting absolute 
model. The example comprises hull, deck and cabin 
surfaces for a 30-foot sailing yacht design. 

The example model has six surface objects: ‘hull’ and 
‘deck’ are C-lofted surfaces; ‘cabin-fwd’, ‘cabin-side’, 
and ‘cabin-aft’ are ruled surfaces; and ‘cabin-top’ is a 
blended surface. The surfaces all have visibility 1, which 
causes only the parameter lines u = constant to be 
displayed. Eleven transverse sections through the model 
are also displayed for purposes of visualizing the shapes. 

‘Hull’ is a C-lofted surface with three B-spline mas- 
ter curves ‘MCA’, ‘MCB’, ‘MCC’, each having four 
absolute points as vertices. ‘Deck’ also has three mas- 
ter curves; the first is the single point ‘Al’, the other 
two are three-vertex B-spline curves ‘deck-beam’ and 
‘transom’. The join between ‘hull’ and ‘deck’ is accu- 
rate and durable because the C-splines at the adjoining 
edges on each surface use the same data points, viz. 
‘Al’, ‘Bl’, ‘Cl’, and therefore are identical curves. 

The three ruled surfaces ‘cabin-fwd’, ‘cabin-side’, 
‘cabin-aft’ are constructed in a similar fashion to one 
another; each uses a snake on ‘deck as one edge, 
providing an accurate and durable join to the ‘deck’ 
surface, and a relative curve dependent on that snake 
as the second (upper) edge. The three snakes on ‘deck’ 
join each other accurately and durably because they 
share common endpoint data, viz. magnets ‘dm3’ and 
‘dm5’. The three relative curves ‘top-fwd’, ‘top-side’, 
‘top-aft’ also join each other accurately and durably 
because they are constructed using common end points, 
viz. relative points ‘rp3’ and ‘rp5’. ‘cabin-side’ joins the 
other two surfaces accurately because its end rulings 
are the lines ‘dm3’ - ‘rp3’ and ‘dm5’ - ‘rp5’, which are 
identical to end rulings on the adjoining surfaces. 

The blended surface ‘cabin-top’ joins the three ruled 
surfaces accurately because it uses their upper edge 
curves ‘top-fwd’, ‘top-side’, ‘top-aft’ as data. Its fourth 
side is a three-point C-spline ‘top-ctr’, which lies accu- 
rately in the centre plane because each of its vertices 
has a zero y coordinate. 
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Table 1 Text representation of logical model for the example application 

Rem 3 x 4 cleft hull with deck and cabin for CAD example 
AbsPoint Al 14 1 0.00 0.00 3.60, 
AbsPoint A2 14 1 1.00 0.00 1.41; 
AbsPoint A3 14 1 2.50 0.00 -0.84; 
AbsPoint A4 14 1 3.00 0.00 -0.90; 
BCurve MCA 12 1 20 * 2 (Al A2 A3 A4); 
AbsPoint Bl 14 1 15.00 5.84 2.64, 
AbsPoint B2 14 1 15.00 6.00 0.54; 
AbsPoint B3 14 1 15.00 3.90 - 1.20; 
AbsPoint B4 14 1 15.00 0.00 - 1.44, 
BCurve MCB 12 1 20 * 2 {Bl B2 B3 B4); 
AbsPoint Cl 14 1 30.00 3.50 2.76; 
AbsPoint C2 14 1 30.90 3.50 1.41; 
AbsPoint C3 14 1 31.70 2.50 0.22; 
AbsPoint C4 14 1 31.70 0.00 0.22; 
BCurve MCC 12 1 20 * 2 (Cl C2 C3 C4); 
CLoftSurf hull 10 2 10 2 10 3 0 3 {MCA MCB MCC); 
AbsPoint transom0 14 1 29.80 0.00 3.00; 
AbsPoint transom1 14 1 29.80 1.75 3.00; 
BCurve transom 10 1 10 * 2 (Cl transom1 transom0); 
AbsPoint deck-ctr 14 1 15.00 0.00 3.45; 
AbsPoint deck-mid 14 1 15.00 2.70 3.45; 
BCurve deck-beam 10 1 10 * 2 (Bl deck-mid deck-ctr}; 
CLoftSurf deck7 2 4 2 10 3 0 3 {Al deck-beam transom); 
AbsMagnet dml 11 1 deck 1.00 0.27; 
RetMagnet dm2 11 1 dml -0.37 0.00; 
RelMagnet dm3 11 1 dml -0.65 0.03; 
RelMagnet dm6 11 1 dml 0.00 0.43; 
RelMagnet dm5 11 1 dm6 -0.80 0.00, 
RelMagnet dm4 11 1 dm5 0.00 -0.20; 
BSnake fp-fwd 11 1 10 * 2 (dml dm2 dm3); 
BSnake fp_side 11 1 20 * 2 (dm3 dm4 dm5); 
LineSnake fp_aft 11 1 10 * dm5 dm6; 
RelPoint rpl 11 1 dml 2.00 0.00 1.30; 
RelPoint rp3 11 1 dm3 2.00 0.00 1.10; 
RelPoint rp5 11 1 drn5 - 0.20 -0.50 1.40, 
RelPoint rp6 11 1 dm6 - 0.30 0.00 1.80; 
Line linl 6 1 1 * rpl rp6; 
AbsBead el 10 1 linl 0.500; 
RelPoint rp7 11 1 el 0.00 0.00 0.20; 
RelCurve top-fwd 11 1 10 fpfwd rpl rp3; 
RelCurve top-side 11 1 20 fp-side rp3 rp5; 
RelCurve top-aft 11 1 10 fp-aft rp5 rp6; 
RuledSurf cabin-fwd 11 2 10 1 1 1 f-fwd top-fwd; 
RuledSurf cabin-side 11 2 20 1 1 1 fp-side top-side; 
RuledSurf cabin-aft 11 2 10 1 1 1 fp-aft top-aft, 
CCurve top_ctr 11 1 10 * 2 {rpl rp7 rp6); 
BlendSurfcabin-top 14 2 4 2 5 2 0 {top-fwd top-side top-aft top-ctr); 
XContours stations 12 1 0 10 1.950 2.850; 
EndModel 

The example model as now defined can easily be 
transformed, with preservation of its topology, into an 
extremely wide variety of alternative shapes by chang- 
ing the coordinates of absolute points, the offsets of 
relative points, and the parameters of magnets. An 
example modification which affects all six surfaces is to 
increase the y coordinate of ‘Bl’. Following this change, 
the connectivity and relative positioning of the several 
surfaces is automatically preserved as the absolute 
model is update (F@re 9). A further example modifi- 
cation is to drag AbsMagnet ‘dml’ to a new position 

Figure 8 Example of model of Table I, comprising six accurately 
conjoined surface objects 

(Figure 10). Because the other ‘dm?’ magnets are rela- 
tive to this one, the entire cabin is transported to a new 
location where it continues to join the deck precisely, 
following update. The update and redisplay for these 
example modifications takes approximately 3 s on a 
486-50 PC. 

CONCLUSIONS 

We have presented the outline for a new logical frame- 
work for CAD, offering several major advantages over 
conventional CAD systems. 

Figure 9 Example model following a change in the Y-coordinate of 
point ‘Bl’ 
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Figure 10 Example model following change in the 1’ parameter of 
magnet ‘dml’ 

The most important advantage is the capture of 
qualitative and quantitative relationships between de- 
sign elements, permitting rapid automatic update of a 
design following changes in an underlying object. This 
can greatly reduce design cycle time and labour, en- 
abling a much more systematic and thorough refine- 
ment and optimization of the complete design. 

RGS provides a framework in which many curve and 
surface types can comfortably coexist in a design sys- 
tem, with programming effort increasing only linearly 
with the number of entities supported. 

To a considerable extent, RGS circumvents the com- 
plications of surface-surface intersection and trimming, 
by providing simple ways to build surfaces whose junc- 
tions are accurate by construction, and are automati- 
cally maintained through updates as qualitative rela- 
tionships between the surface elements. 

RGS also provides an extremely compact representa- 
tion of its geometric models, including dependency 
relationships, in a text format which may be viewed as a 
geometry programming language. 

RGS is readily extensible in many ways which invite 
exploration; some of these will be developed in Part 2. 
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