
TFRWORTU C~m&wter-Aided Design, Vol. 27, No. 11, pp. 821-832,1995
Copyright Q 1995 Elsevier Science Ltd

Printeb;n%at Britain. All rights resewed
0010-4485/95 $10.00 + 0.00

Relational geometric synthesis:
Part 1 -framework
John S Letcher Jr, D Michael Shook and Simon G Shepherd

A novel object-orientated framework is proposed for 3D
computer-aided design. Geometric objects including points,
lines, curves, surfaces and solids are defined and constructed
in a system which captures and retains many dependency
relationships between objects, in a data structure equivalent
to a directed graph. The primary advantage is automatic
updating of the model, preserving relationships, when an
underlying object is changed. Multiple types of parametric
curves and surfaces and multiple levels of dependency are
supported through a recursive program structure. Difficulties
of surface-surface intersection and trimming are largely
avoided, by provision of novel entities and relationships which
permit construction of accurate and durable joins between
surface objects.

Keywords: surface modelling, relational geometry, computer-
aided geometric design

Geometric definition is an essential element in the
design of practically any object to be manufactured. In
CAD, mathematical representations of an object’s
geometry are stored in computer memory and manipu-
lated by the computer user. The end product of a CAD
design can be scale drawings; NC instructions for auto-
mated production of the object; or visualization or
pictorial rendering of the object may be the entire
objective. The CAD representation may also serve as a
basis for analysis and evaluation of the design aside
from visual aspects, e.g. finite-element method (FEM)
stress analysis or computational fluid dynamic (CFD)
flow analysis.

We open by noting three areas of deficiency in
conventional cm:

failure to capture or retain relationships which are
important to the designer;
limitations on the variety of curve and surface types
which are commonly supported; and
difficulties associated with surface-surface intersec-
tions and trimming of surfaces along such intersec-
tions.

AeroHydro, Inc., PO Box 684, Southwest Harbor, ME 04679, USA
Paper receiwd: 21 June 1994. Retised: 21 Nowmber 1994

We are introducing a formal framework - ‘relational
geometric synthesis’, or RGS - which addresses these
three issues, and furnishes substantial solutions for
them, with few negative side effects that we are aware
of. Indeed, in our experience many other advantages
accrue from the logical consistency of RGS, which
make it easy to learn, to use, and to remember.

In operation of a CAD program, each geometric ob-
ject is created in sequence, either by execution of a
user command, or as a result of reading data from a
file. Almost every new object is positioned, orientated
or shaped in some deliberate relationship to one or
more already existing objects. For example, line B
might be created in such a way that one of its end-
points is at one end of an existing line A. However, this
relationship is not retained by the CAD system; so if in
some later revision line A is displaced, then line B will
no longer connect to line A. A conventional CAD repre-
sentation of geometry therefore consists of a large
number of essentially independent simple objects,
whose relationships are incidental to the manner and
order in which they were created, but are not known to
the program.

If design always proceeded in a forward direction,
loss of relationship information might be of little im-
portance. One would start a project, add objects until
the design was complete, and save the results. How-
ever, it is well known that engineering design is only
rarely a linear forward process. It is far more com-
monly an iteration: design is carried forward to some
stage, then analysed and evaluated; problems are iden-
tified; then the designer has to retreat to some earlier
stage, change some elements, and work forward again.
It is typical that many iterative cycles are required,
depending on the skills of the designer, the difficulty of
the design specifications, and whatever constraints and
optimization objectives may be present. In each for-
ward stage, the designer will have to repeat many
operations he previously performed (updating), in or-
der to restore relationships disrupted by the revision of
earlier design elements.

Revision of an existing design to meet new require-
ments is a common situation where similar problems
are encountered. A change that alters an early stage of
the design process requires at least one forward pass
through all the subsequent design stages to restore
disrupted relationships. If the relationships and the

Computer-Aided Design Volume 27 Number 11 November 1995 821

Relational geometric synthesis: J S Letcher Jr et al.

sequence of design stages to achieve them have been
lost, the updating process can be very difficult, error-
prone and time-consuming.

Some partial solutions to this problem are known. In
most CAD programs, lines A and B can be created
together as part of a ‘polyline’ entity; then their con-
nectivity will be automatically maintained if any of
their endpoints, including their common point, are
moved. Himelstein’ has disclosed the concept of a
‘sticky’ attribute which causes selected lines to remain
connected to objects they are deliberately attached to.
Draney* has disclosed a ‘relative point’ entity which is
specified by its positional relationship (coordinate off-
sets) from a selected point. 0osterholt3 has disclosed
the concept of giving names to geometric solids, and
positioning each solid in relationship to at most one
other solid, in a tree structure of positional depen-
dency. The graphics standard PHIGS4 provides simi-
larly for optional naming of geometric structures, and
use of structure names for positioning other structures.
Ota et d5 have disclosed a CAD system in which some
curve objects have names, and are used by name in the
construction of some surface objects. In ‘constraint-
based modelling” some kinds of relationships between
objects are represented by constraint equations which
are automatically satisfied during updates of the model.

Sutherland’s Sketchpad project7 utilized stored refer-
ences to point objects to establish durable connections
between lines. Some elements of RGS may underlie
AGPS (aerodynamics grid and panelizing system), a
proprietary grid generation system at Boeing’-‘“. AGPS
has at least some entities which reference other objects
for their data, achieving at least one level of automatic
updating. Reference to objects by name or address, and
geometry languages, were also present in the APT tool
programming system”, and in Armit’s Multipatch,
Mulitobject, ICON and TAG projects’*.“. Snyder I4
presents a procedural-language approach to CAD which
supports rapid regeneration following changes in un-
derlying objects. Each of these systems allows a script
to be replayed in order to regenerate a complex
geometry with parametric variations.

Further, there are some examples of storing a multi-
level relational structure of interobject dependencies,
permitting selective updating of affected objects.
Armit13 discusses this capability in a surface modeller,
TAG. PADL-215 is a CSG solid modelling framework
with this feature, and Gossard et ~1.‘~ describe a di-
mension-driven polygonal solid modeller.

In RGS every geometric object has a name, and a
rich system of entities (primitives or abstract object
types) is provided which reference other objects by
lzame for their instantiation. The pervasive use of refer-
ences to objects by name or identity allows the capture
of many kinds of qualitative and quantitative relation-
ships between objects, in a logical data structure having
the form of a relation or directed graph. Using this
structure, a program can automatically enforce all cap-
tured relationships during updates of the model, cor-
rectly propagating changes through the precise set of
objects that are actually affected. This capability dra-
matically transforms geometric design from a linear,
disjoint process in which many design elements neces-
sarily become frozen in non-optimal states, to a fluid,
coherent process permitting changes in any part of the

model at any time, thus greatly facilitating refinement
and optimization of the entire design.

Many different curve and surface entities are valu-
able for different purposes in CAD. Circular arcs and
surfaces of revolution are useful because they are natu-
ral elements of, and easily manufactured by, rotating
machinery. B-spline curves and surfaces are useful
because they can be shaped into such a variety of
forms, and because of the many useful and intuitive
relationships they bear to their control points. Inter-
polating splines are useful in other circumstances, when
we need a free-form curve to pass through specified
points. Standard airfoil curves are useful because foils
made from them have predictable and desirable aero-
dynamic characteristics17. Developable surfaces are
useful because of the ease with which they can be
formed from flat sheet materials. Numerous other use-
ful curve and surface entities could be added to this
list.

On the other hand it is burdensome for a CAD
program to support a large number of curve and sur-
face types, because their behaviours and data require-
ments vary so widely. It is generally accepted that the
programming cost of supporting N entities increases
much more rapidly than in
lar, it has been suggested 18

roportion to N. In particu-
that support of N surface

types requires implementation of N(N + 1)/2
surface-surface intersection routines. Even the hand-
ful of useful curves and surfaces mentioned in the
preceding paragraph have not previously been sup-
ported by any single CAD system known to the authors.

One known partial solution to this problem is to
support only a single surface type, which has sufficient
degrees of flexibility to encompass a useful set of
simpler surfaces as special cases. Nonuniform rational
B-spline (NURBS) surfaces have often been proposed to
fill this role’s, since they encompass the earlier BCzier
and B-spline formulations, and by special choice of
knots and weights they can exactly represent arcs of
conic sections, especially circles. Disadvantages of this
approach include the obscure relationship between the
selection of order, knots, weights and control points to
achieve a desired curve; the large quantity of data
required to define even a simple surface such as a
circular cylinder; non-uniformity of resulting parame-
terizations; and the continuing usefulness of some
curves and surfaces which lie outside the compass of
NURBS.

A second main objective of relational geometric syn-
thesis is therefore to provide a CAD surface modelling
environment in which a wide variety of curve and
surface types are supported for utility, convenience and
tlexibility. This is accomplished by a combination of
polymorphism and recursion.

In CAD surface and solid modelling systems, intersec-
tions between surfaces often account for much of the
complexity in both the program and the user interface,
and are a major source of unreliability. In a typical
application, surface Y is constructed, then surface 2 is
constructed in such a way that it deliberately intersects
surface Y. The next step is usually to find the curve of
intersection of Y and Z, so portions of Y and/or 2
which extend beyond the intersection may be discarded
(trimmed).

The problem of intersection of two surfaces is inher-
ently difficult, for several reasons. Finding any single

822 Computer-Aided Design Volume 27 Number 11 November 1995

point of intersection requires solution of three simulta-
neous, usually non-linear, equations. These equations
will be ill-conditioned if the intersection is at a low
angle. The intersection may consist of isolated points,
simple arcs, closed curves, self-intersecting curves, or
multiple combinations of these elements. The surfaces
might indeed coincide over some finite area. Once a
curve of intersection is found, it is often difficult to
indicate correctly which portions of which surfaces are
to be discarded. After trimming, a parametric surface
patch may no longer be topologically quadrilateral, so
it can no longer be conveniently parameterized.

A third main objective of RGS is therefore to pro-
vide a CAD surface modelling environment in which the
difficulties of intersecting and trimming of surfaces are
largely avoided, by providing convenient ways to con-
struct surfaces which join one another accurately in the
first place, with joins that are automatically maintained
during updates of the model. This is accomplished by
providing transfinite surface entities which interpolate
arbitrary edge curves; by use of object names for points
and curves so two surfaces can reference the same
curve or set of points as edge data; and by providing a
class of curve entities embedded in surfaces (‘snakes’).

It is noted that the novel features of RGS are the
subject of patent applications in several countries. The
PC-based surface modeller MultiSurf (R) from Aero-
Hydro, Inc. is an initial commercial implementation of
RGS. MultiSurf currently supports 20 point entities, 18
curves, 13 snakes, and 22 surface entities, in a highly
interactive and visual 3D environment.

RELATIONAL GEOMETRY

For purposes of this paper, a 3D design space is con-
templated, utilizing Cartesian coordinates (x, y, 2) for
the location of points. Our focus is primarily on surface
rather than solid modelling. Of course, the modelling
of surfaces, and particularly of accurately conjoined
multiple surface patches, relates strongly to B-rep solid
modelling, so we believe RGS has a large potential in
that area. At this time we see little relation of RGS to
CSG solid modelling. RGS does, however, suggest an
alternative approach to solid modelling which will be
developed in Part 2.

Definition: An entity is an abstract type of geometric
object supported by the system, and requiring a specific
set of data for its actualization.

Common CAD entities are the point, the line, the arc,
the BCzier patch. An entity can be thought of as a
blank form, with spaces to fill in data such as name,
colour, names of supporting objects, etc.

Definition: An object is an instance of an entity; for
example an absolute point, colour yellow, located at
(1,2, -3). An object can be thought of as a completely
filled-in entity form.

Comment: In CAD usage, in general, we find the words
‘object’ and ‘entity’ applied fairly interchangeably to
both of the two concepts that we are distinguishing.
Dictionaries likewise make little distinction between

Relational geometric synthesis: J S Letcher Jr et a/.

the words. We early encountered a need to have dis-
tinct names for the two separate concepts, and our
original choice (as stated above) stuck. We are aware of
precedent for use of the word ‘primitive’ for what we
are calling an ‘entity’.

The use of an object name as data for another object
establishes a dependency relationship between the two
objects. In this relationship, the object whose name is
used is called the supporting object or support; the
object which uses the name as data is called the depen-
dent object or dependent. The dependency relationship
is directional. The complete set of dependency rela-
tionships between the objects in a model has the logical
form of a relation or directed graph (digraph)lg. Each
node of the dependency digraph represents an object;
each directed edge indicates the dependency of one
object on another (see Figure 2 below).

To date, implementation of RGS are restricted to
acyclic directed graphs. Bidirectional dependencies (for
example, mutual tangency between two surface objects)
would open some interesting possibilities, and compli-
cations, which we have not explored. Most forms of
cyclic dependency we have contemplated result in a
singular model; i.e. either no solutions or an infinite
number of solutions.

The dependency relationship can take many forms.
For example, a relative point depends on one other
point object for its location. A B-spline curve depends
on each of the point objects which are its control
points. A lofted surface depends on each of the curve
objects through which it is lofted, and it also depends,
in turn, on each point object used in the definition of
those curves. Dependency can extend to many levels.
An object can depend on many other objects, and can
in turn support many other objects.

Some objects may be defined in an absolute sense,
having no dependency on any others. For example, an
absolute point is specified solely by its coordinates X,
Y, 2.

Use is made of curve and surface parameters as part
of the data for some entities. For example, a point
constrained to lie on a curve (a bead) can be located by
naming the curve and giving a specific value for t. A
point constrained to lie on a surface (a magnet) can be
located by naming the surface and a specific pair of
parameter values for u, u. A snake is a parametric
curve in the two-dimensional u, u parameter space of
its supporting surface, mapped onto the supporting
surface.

Definition: A logical model is any valid collection of
objects, i.e. a set of valid objects in which all required
dependencies are satisfied, without cyclic dependen-
cies.

Definition: An absolute model is a geometric represen-
tation computed from a logical model, in which all
objects are located by their absolute coordinates.

The calculation of absolute models from logical mod-
els is the primary computational task in RGS.

Those qualitative and quantitative properties of a
model which are captured and enforced by utilizing the
data structure of dependencies are referred to as
durable properties.

Computer-Aided Design Volume 27 Number 11 November 1995 823

Relational geometric synthesis: J S Letcher Jr et al.

CLASSIFICATION OF RGS ENTITIES

It is useful to classify and define entities first in terms
of their dimensionality and embedding, and second in
terms of their primary dependencies:
Points are zero-dimensional objects.

An absolute point depends on nothing.
A relative point depends on another point.
A bead is a point embedded in a curve.
A magnet is a point embedded in a surface.
A ring is a point embedded in a snake.

Curves are one-dimensional objects.

A line depends on two points.
An arc depends on three points.
A B-spline curve depends on two or more points.
A C-spline curve interpolates two or more points.

Snakes are one-dimensional objects, parametric curves
embedded in a parametric surface. Any snake depends
on its surface; in addition:

A line snake depends on two magnets or rings.
An arc snake depends on three magnets or rings.
A B-spline snake depends on two or more magnets
or rings.
A C-spline snake interpolates two or more magnets
or rings.

Surfaces are two-dimensional objects.

A translation surface depends on two curves.
A ruled surface depends on two curves.
A revolution surface depends on one curve and one
line.
A C-lofted surface interpolates two or more curves.
A blended surface depends on four curves.
A B-spline surface depends on an array of points.

The above list of entities is intended to be illustrative,
but by no means complete. Additional entities can
easily be suggested for any of these classes.

A different useful classification may be made in
terms of the support role each entity class can fulfil:

When a point is required, any point object will serve.
When a bead is required, only a bead will serve.
When a magnet is required, a magnet or ring will
serve.
When a ring is required, only a ring will serve.
When a line is required, only a line will serve.
When a curve is required, any point, line, curve or
snake will serve.
When a snake is required, any snake, magnet or
ring will serve.
When a surface is required, only a surface will serve.

These rules are based on two precepts:

1 A supporting object must have the requisite proper-
ties to durably fulfil its role. Thus, a point which
currently happens to lie on a surface does not qualify
as a magnet, because in some future revision it may
no longer be on that surface. A curve or surface

2

cannot serve as a point, because it generally will
consist of multiple points.
Degenerate objects are permitted; e.g. a point used
as a curve simply returns
any value of parameter, t.

the same coordinates for

A SIMPLE EXAMPLE

One useful form of representation of a logical model is
a text file having one record for each object. This file
maps one-to-one into the program’s internal data
storage. The file format is introduced here, and
elaborated in a later section. An object record includes
the entity type, the object name, various object at-
tributes such as colour and visibility, and any other
variable data required to actualize the object, pre-
sented in a predefined order peculiar to the entity. For
example, the prototypes or forms for the absolute point
entity and the line entity are, respectively:

AbsPoint name colour G’s x y z
Line name colour uis ndt relabel point1 point2

where

colour = a colour index

cis = visibility index (0 means invisible)

ndt = number of divisions in t for wireframe displa

relabel = provision for reparameterization

(‘ * ’ means default parameterization)

The following set of five records is an RGS solution
to the ‘line A-line B’ problem discussed above (Figure
I):

AbsPoint Al 14 1 1. 1. 3.;

AbsPoint A2 14 1 2. 1. 3.;

Line line-A 13 1 1 * Al A2;

AbsPoint B2 14 1 2. 3. 3.;

Line line-B 13 1 1 * A2 B2;

This model contains five objects: three absolute points
(named ‘Al’, ‘A2’, ‘B2’) and two lines (named ‘line-A,
‘line-B’). This data clearly records the intention that
‘line-B’ start where ‘line-A’ ends, viz. at point ‘A2’.
The dependency of both Lines on point ‘A2’ creates
the durable connection.

The following record adds one more object to this
example: AbsBead bead-B 12 1 line-B 0.7. This cre-
ates a visible point, of colour 12, constrained to remain

I z

Figure I A simple relational model consisting of four points and
two lines

824 Computer-Aided Design Volume 27 Number 11 November 1995

Fire 2 The directed graph of dependencies for the model of
Figure I

on ‘line-B’, at a parameter value of 0.7, i.e. 70% of the
way from point ‘A2’ to point ‘B2’. Following any change
in ‘line-A’, ‘bead-B’ will still lie on ‘line-B’, in the
same relative location. The dependency of ‘bead-B’ on
‘line-B’ creates the durable relationship. The digraph
for this model is shown in Figure 2.

For purposes of output or display, an absolute model
will be computed from the logical model. For this
example, the absolute model would consist of:

a point, colour 14 at (1.) 1.) 1.)

a point, colour 14, at (2., l., 1.)

a line, colour 13, from Cl., 1.) 1.) to (2., 1.) 1.)

a point, colour 14, at (2., 3., 1.)

a line, colour 13, from (2., 1.) 1.) to (2., 3 ., 1.)

a point, colour 12, at (2., 2.4,l.I

Now suppose that the example model is changed by
moving point ‘A2’ to a new position (2., l., 2.). This is
accomplished by changing one element in one record
of the logical model:

AbsPoint A2 14 1 2. 1. 2.;

Following this change, the updated absolute model
(Figure 3) would consist of:

a point, colour 14 at Cl., 1.) 1.)

a point, colour 14, at (2., 1.) 2.)

a line, colour 13, from (l.,l.,l.) to (2.,1.,2.)

a point, colour 14, at (2.,3., 1.)

a line, colour 13, from (2., 1.,2.) to (2., 3., 1.)

a point, colour 12, at (2.,2.4,1.3)

The connection of ‘line-A’ and ‘line-B’ has been auto-
matically maintained; ‘bead-B’ is still located on
‘line-B’, and in the same proportional position, i.e. at
70% of the length of ‘line-B’. This brief example
illustrates the automatic updating of the model that is

X

Figure 3 The model of Figure I, following a change in position of
point ‘A2

Relational geometric synthesis: J S Letcher Jr et al.

made possible by utilization of the data structure of
dependency relations.

LOGICAL MODEL FILE

The concept of the logical model file was introduced in
the preceding section; further details are presented
here.

Each object description begins with a keyword speci-
tying the entity, followed by the object name. Most
objects have a colour attribute, currently selecting one
colour from a palette of 16. Most objects have a visibil-
ity attribute; this is a byte in which the bits have
different significance for different classes of entities, as
follows:

points:
bit 1: point is visible

curves, snakes:
bit 1: polyline is visible
bit 2: tick-marks displayed at uniform parameter in-

tervals
bit 3: polygon connecting control points or magnets

is visible
surfaces:

bit 1: parameter lines in u-direction are visible
bit 2: parameter lines in pdirection are visible
bit 3: (reserved)
bit 4: boundary is visible
bit 5: net connecting control points is visible

The following is a representative set of entity de-
scriptions, sufficient for the example developed at the
end of the paper. Many other entities will be detailed
or proposed in Part 2 of this paper.

Point class

Absolute point
AbsPoint name colour vis x y z.

x, y, z are the absolute coordinates of the point.

Relative point
RelPoint name colour ti point a5 dy dz.

dx, dy, dz are the coordinate offsets from point.

Absolute bead
AbsBead name colour ti curue t.

t is an absolute parameter value on curw.

Relative bead
RelBead name colour h bead dt.

dt is the parameter offset from bead.

Absolute magnet
AbsMagnet name colour ~6 surface u v.

u, v are the absolute parameters on surface.

Computer-Aided Design Volume 27 Number 11 November 1995 825

Relational geometric synthesis: J S Letcher Jr et al.

Relative magnet
RelMagnet name colour [is magnet du dc.

du, drl arc the parameter offsets from magnet.

Absolute ring
AbsRing name colour LZS snake t.

t is an absolute parameter value on snake.

Relative ring
RelRing name colour ris ring dt.

dt is a parameter offset from ring.

Curve class

All curves are parameterized from 0 to 1. All curve
prototypes include ndt, specifying the number of divi-
sions in t for wireframe display, and a ‘relabel object’
which permits reparameterization of the curve, as de-
tailed in Part 2. Some curves additionally require speci-
fication of ‘type’ parameters.

Line
Line name colour his ndt relabel point1 point2.

The line is a straight line from pointl (x,) to point2
(x,>: x(t) = (1 - t)x, + tx,.

Circular arc
Arc name cobur tis ndt relabel type point1 point2 points.

For all types, the curve is a circular arc lying in the
plane of the three points. In some cases the arc can
degenerate to a line (e.g. Type 1 with collinear points)
or to a point (e.g. Type 2 with point1 and point2
coincident). In all cases parameterization is uniform
with respect to arc length.

Type 1: The arc interpolates the three points in
sequence. (Error if any two points coincide.)

Type 2: The arc starts at xi, has centre at x2, and
ends on the line from x2 to x3. (Error if the points are
collinear.)

Type 3: The arc is a full circle starting and ending at
. x,, with centre at x2, the direction is such that the

closest point to x3 has r < .5. (Error if the points are
collinear).

Type 4: The arc runs from x, to x3, and at x, is
tangent to the line from x, to x2. (Error if points 1 and
2 coincide).

Type 5: The arc runs from x, to x3, and at x3 is
tangent to the line from x2 to x3. (Error if points 2 and
3 coincide).

B-spline curve
BCurve name colour his ndt relabel type (point1
point2. . . pointN} .

type specifies the spline order k: k = type + 1, i.e.
1 = linear, 2 = quadratic, etc.

The named points are the control points in sequence.
(Braces are used to contain a variable-length list of
supports.) A point is evaluated by using B-splines of the
specified order as weights applied to the N control

points”“, 71:

x(t) = 2 x;&(t)
i= 1

C-spline cuwe
CCurve name colour cis ndt relabel type (point1
point2. . pointN).

type specifies the spline order k: k = type + 1, i.e.
1 = linear, 2 = quadratic, etc.

The named control points are interpolated in se-
quence by the curve. The curve is a parametric spline
with chord-length parameterization, knots at the data
points (odd type) or midway between data points (even
type), and not-a-knot end conditions*‘. An error occurs
if two consecutive control points are coincident.

Sub-curve
SubCurve name colour vis ndt relabel bead1 bead2.

The subcurve is the portion of the basis curve x,(.)
between the two beads, reparameterized to the interval
10,ll:

x(t)=x,[(l-t)t,+tt,l

Relative curve
RelCurve name colour uis ndt relabel curw point1 point2.

The relative curve is a copy of the basis curve xc(. >,
linearly mapped to span the two endpoints x, and x2:

x(t) =x,(t) + (1 -t> [x, -x,(O)] + t[x, - x,(l)1

Snake class

All snakes are parameterized from 0 to 1. A snake is
evaluated by first locating a point w = {u, U) in the
parameter space of the surface, then evaluating the
surface with those parameter values. In general, the
supporting surface for the snake is deduced from the
supporting magnets or other surface-based objects sup-
porting the snake. It is an error condition if these
supporting objects do not all lie on the same surface.
Like curves, all snake prototypes include ndt, specifying
the number of divisions in t for wireframe display, and
a ‘relabel object’ which permits reparameterization of
the snake. Some snakes additionally require specifica-
tion of ‘type’ or ‘order’ parameters. Snake prototypes
are in fact completely parallel to the corresponding
curve prototypes.

Line snake
LineSnake name colour vis ndt relabel magnet1 magnet2.

The LineSnake is a straight line in u, c’ parameter
space from magnet1 (w, = {u,, u,)) to magnet2 (w? =
I+, L:*J):

w(t) = (1 - t)w, + tw,

Arc snake
ArcSnake name colour vis ndt type relabel magnet1 mag-
net2 magnet3.

826 Computer-Aided Design Volume 27 Number 11 November 1995

Types 1 to 5 are the same as for Arc, above. The
circular arc is drawn in the u, u parameter space and
then mapped onto the surface.

B-spline snake
BSnake name colour vis ndt relabel type (magnet1 mag-
net 2. . . magnetN}.

type specifies the B-spline order: 1 = linear, 2 =
quadratic, etc. The named magnets are the control
points in sequence. A point is evaluated by using B-
splines of the specified order as weights applied to the
control magnets”, ‘r :

w(t) = 5 w;B;(t)
i=l

Figure 4 illustrates a BSnake object, dependent on a
surface object and multiple magnet objects.

C-spline snake
CSnake name colour tis ndt relabel type (magnet1 mag-
net2. . . magnetN}.

type specifies the spline order: 1 = linear, 2 =
quadratic, etc. The named magnets are interpolated in
sequence. The snake is a parametric spline of the
specified type in the u, u parameter space with chord-
length parameterization, knots at the data points (odd
type) or midway between data points (even type), and
not-a-knot end conditions ‘O. An error occurs if consec-
utive magnets are coincident.

Sub-snake
SubSnake name colour vis ndt relabel ring1 ring2.

The subsnake is the portion of the basis snake w,(.)
between the two rings, reparameterized to the interval
LO, 11:

w(t)=w,[(l-t)t,+tt,]

Surface class

All surfaces are parameterized from 0 to 1 in both u
and u directions. All surface prototypes include four
subdivision parameters which control the display of a
wireframe mesh:

ndu = no. of divisions in u-direction
nsu = no. of subdivisions in u-direction
ndu = no. of divisions in u-direction
nsu = no. of subdivisions in u-direction

and one normal orientation parameter:

ior = 0 or 1

Figure 4 A B-spline snake supported by magnets embedded in a
parametric surface object

Relational geometric synthesis: J S Letcher Jr et a/.

(With ior = 0, the unit normal n is oriented so that the
scalar triple product I dx/du dx/d u nl is positive;
ior = 1 reverses the normal orientation. This provision
anticipates applications in which the inside/outside
orientation of a surface is significant.)

There are several species of ‘lofted surface’ which
form a subclass with important common properties.
Each derives its name and behaviour from a type of
curve. Each is supported by two or more curves x,(t),
i=l P”‘, N called master curws. A surface point x(u, U>
on a lofted surface is obtained in three stages: (1) from
each ‘master curve’ i take the point xi(u); (2) form the
‘longitudinal’ curve of specified type which uses the
xi(u) in sequence for its data; (3) evaluate the longitu-
dinal curve at parameter U. Each ruled surface inter-
polates its first and last master curves, along the u = 0
and u = 1 edges, respectively.

Ruled surface
RuledSurf name colour uis ndu nsu ndv nsv ior curE1
curw2.

The surface is formed from the two curves y,(t), yz(t)
by linear interpolation:

x(u, U) = (1 - U) y,(u) + uy,(u)

The ruled surface belongs to the subclass of lofted
surfaces, and could as well be called a ‘line-lofted
surface’.

Arc-lofted surface
ALoftSurf name colour vis ndu nsu ndv nsu ior type
curwl curw2 curw3.

A surface point x(u, v) is obtained in three stages: (1)
from each ‘master curve’ i take the point xi(u); (2)
form the circular arc curve of specified type which uses
the xi(u) as data points; (3) evaluate the arc curve at
parameter u. An error will occur in stage (2) if the
three points are invalid data for an arc curve.

B-lofted surface
BLoftSurf name colour vis ndu nsu ndu nsv ior type
kurwl curw2.. . curuel\r).

A surface point x(u, u) is obtained in three stages: (1)
from each master curve i take the point xi(u)1 (2) form
the B-spline curve of specified order which uses the
x,(u) in sequence as control points; (3) evaluate the
B-spline curve at parameter u.

When the master curves are all B-spline curves of
the same order, the same number of vertices, and
uniform knots, the B-lofted surface is identical to the
tensor-product B-spline surface20,21 using the same ar-
ray of control points. Otherwise, the B-lofted surface is
a useful transfinite generalization of the B-spline sur-
face.

C-lofted surface
CL,oftSurf name colour ti ndu nsu ndv nsv ior type
{cur& curw2.. . curuehr).

A surface point x(u, II) is obtained in three stages: (1)
from each ‘master curve’ i take the point Xi(U); (2)
form the C-spline curve of specified type which inter-

Computer-Aided Design Volume 27 Number 11 November 1995 827

Relational geometric synthesis: J S Letcher Jr et al.

polates the x,(u) in sequence; (3) evaluate the C-spline
at parameter L’. An error condition will occur in stage
(2) if x,(u) = x,+,(u) for any i.

Developable surface
DevSurf name colour cis ndu nsu ndc nsc ior curcel
curw2.

A developable surface is formed spanning the two
basis curves y,(t,), yz(f2) by finding ruling lines which
join the two edges and satisfy the additional
condition”,“-‘:

f<t,, t,> = I dy,/dt, dy,/dt, y,(t, 1 - y2(tZ)l = 0

The c parameter is the fractional distance along any
ruling from edge 1 to edge 2.

Translation surface
TranSurf name colour ris ndu nsu ndl, nsr> ior curreel
curw2.

The surface is formed from the two curves y(t), z(t)
by addition:

x(u, L’) = y(u) + z(r1> - z(O)

i.e. a copy of Z(V) is translated along y(u).

Revolution surface
RevSurf name colour cis ndu nsu ndc nsL: ior curw axis
angle1 angle2.

axis has to be the name of a line object.
The surface point at u, L’ is constructed by taking a

point y(u) from cur.ve, then rotating it through an angle
0 = (1 - LI)O, + ~0~ about the axis line.

Blended surface
BlendSurf name colour ~'1's ndu nsu ndc nsv ior curwl
curr?e2 curw3 curwl.

The surface is a bilinear Coons patch” constructed
from the four curves. The equation for locating a
surface point is:

x(u, I’) = (1 - L’)X,(U) + VX,(l ~ u)

+ (1 - u)x,(l - I’) + ux2(L’)

- (1 - UHl - L’Hx,(O) +x,(1)1/2

- u(l - L’l[X,(l) +x,(0)1/2

- uc[x,(l) +x,(0)1/2

- (1 - U)1’[X?(l) +x,(0)1/2

The four basis curves nominally join end-to-end in a
closed loop. If the curves do not all meet in this
fashion, a surface patch is still formed, but it does not
interpolate all its edges. Triangular patches can be
formed by having one degenerate side, i.e. one of the
four curves is just a point.

Sub-surface
SubSurf name colour [is ndu nsu ndc nsc ior snake1
snake2 snake3 snakel.

The sub-surface is a bilinear Coons blending of four
snakes lying on a surface xs(.I (Figure 5). The equation
for locating a surface point is:

x(u, u) = x,(w), where

Figure 5 A sub-surface bounded by four snakes embedded in a
surface object

w(u, 1:) = (1 - c>w,(u> + cw,(l -u)

+ (1 - u)w,(l - L’) + uw,(c)

- (1 - UN1 - c)[w,(Ol + w,(l)]/2

- u(1 - c)[w,(11 + w,(O)]/2

- uc[w,(l> + w,(O)]/2

- (1 - u)c[w,(l) + w,(O)]/2

The four basis snakes nominally join end-to-end in a
closed loop. If the curves do not all meet in this
fashion, a surface patch is still formed, but it does not
interpolate all its edges. Triangular subsurface patches
can be formed by having one degenerate side, i.e. one
of the four snakes is just a magnet.

In a logical model file, each object is represented by
a single text record conforming to the format specified
in the above entity definitions. White-space characters
separate tokens, but are not otherwise significant. An
object record is terminated by a semicolon. The text
file is terminated by the keyword ‘EndModel’. Remarks
can be included in the text file by use of the keyword
‘Rem’. Any object must be defined before it can be
used as support for another object.

Internal to the program, objects may be referenced
by serial numbers corresponding to their sequence in
the input data file, or sequence of creation, or other
unique index numbers, or by pointers to memory. Re-
quiring that all references be to previously defined
objects (lower serial number) is a simple way to exclude
circular dependencies (digraph cycles). The organiza-
tion of internal storage of the logical model may in-
clude a data structure representing the dependency
digraph, to be used to control updating of the absolute
model.

Because model files store only the logical model,
requiring only about 30-60 characters per object, they
are very compact. A model of 200 objects, which we
currently view as moderately complex, would probably
have a file size under 10 kB. In binary form, the same
data would be about 50% smaller again.

The logical model file syntax can be viewed as a
procedural geometric programming language. The en-
tity keyword is a command to create an object of
specified type (invocation of a function), and the vari-
able data items that follow are function arguments.
This view of the model file will be further explored in
Part 2.

828 Computer-Aided Design Volume 27 Number 11 November 1995

SUPPORT OF MULTIPLE CURVE AND
SURFACE TYPES

The second principal objective of RGS is achieved by
polymorphism and recursive program structure. The
object orientation of RGS suggests an object-orien-
tated implementation, but in fact all operational imple-
mentations to date have been via procedural languages.

To make these ideas more specific, we focus on the
support of multiple curve types in a procedural imple-
mentation. First, in RGS all curves are members of a
class which embodies many common properties, e.g. a
common range of parameterization, 0 to 1. All curve
objects are accessed through a single ‘generic’ function
‘Curve’, whose arguments include the identity (or me-
mory location) of a curve object and a list of parameter
values, and which returns a list of 3D points sampled
from the specified curve at the specified parametric
positions. From the point of view of a routine that
needs to use points taken from a curve, all curves are
equivalent; the routine calling ‘Curve’ does not need to
know what kind of curve it is interrogating. ‘Curve’
must examine the data of the specified curve object,
determine what kind of curve it is, and branch to the
routine for evaluating this particular kind of curve from
its particular data. LaBozzetta et al. have previously
employed this polymorphic approach to supporting
multiple surface types in 13G, a geometry system for
CFD gridding24.

Second, to allow for the possibility that objects used
to support a curve are other curves, or depend on other
curves, it is essential that the generic ‘Curve’ routine
be programmed recursively, so it can call itself, or be
called by routines which it has called. In similar fash-
ion, generic recursive ‘Point’ and ‘Surface’ routines
must be provided, as well as generic recursive routines
for evaluating some other entity classes we have not yet
introduced.

The three ‘generic’ class-level or primary procedures
named ‘Point’, ‘Curve’ and ‘Surface’ are the interface
to any application program requiring absolute geomet-
ric information from the model. These have input and
output arguments as follows:

. Point
in: a point object
out: absolute coordinates X, y, z

. Curve
in: a point, line, curve or snake object
list of t parameter values
out: list of absolute point coordinates x, y, z

. Surface
in: a surface object

list of z4 parameter values
list of u parameter values

out: array of absolute point coordinates X, y, z

The object passed to these procedures could be speci-
fied by name, index, serial number, or address pointer;
or could be passed ‘by value’, i.e. a data structure
which includes the entity type. Any input list of
parameter values could have only a single entry, if only
one point on the object is to be evaluated.

Three other class-level primary procedures return
parameter values which are required in the operation

Relational geometric synthesis: J S Letcher Jr et al.

of Point, Curve and Surface for some entities:

. Bead
in: a bead or ring object
out: supporting curve or snake;

parameter value t
l Magnet

in: a magnet or ring object
out: supporting surface; parameter values 24, u

. Snake
in: a snake, magnet or ring object

list of t parameter values
out: supporting surface;

array of parameter values u, u

Module ‘Point’ determines what kind of point object
it is evaluating, and branches to the appropriate proce-
dure for evaluating that type of point. Similarly, ‘Curve’,
‘Snake’ and ‘Surface’ are basically branches to their
constituent secondary routines, one for each supported
entity in the class.

‘Line’, ‘LineSnake’ and ‘RuledSurface’ routines share
a common ‘LineMath’ routine; similarly, the other
curves, snakes and lofted surfaces share common sec-
ondary math routines, able to operate with either 2D
data (when called for a snake) or 3D data (when called
for a curve>. It is obvious now how easily a new para-
metric curve, snake, or surface entity can be added to
the system; it requires only:

1 defining the prototype for the new entity;
2 addition of one secondary routine implementing the

new entity; and
3 slight modification of one primary procedure, adding

a branch to the new secondary routine.

Clearly, the effort of supporting N curves or surfaces is
only O(N).

Evaluation of most entities requires calls to other
primary procedures; for example, a bead requires eval-
uation of a curve; a snake requires evaluation of a
surface.

Support of ‘relative’ entities of all types evidently
opens the possibility of recursion. For example, to
locate a relative point, the program first needs to locate
the basis point, no matter what kind of point object the
basis point is. Thus, ‘RelativePoint’ must be able to call
‘Point’; ‘RelativeBead’ must be able to call ‘Bead, etc.

Other potential instances of recursion arise during
evaluation of curves and surfaces. For example, ‘Line’,
‘At-c’, ‘BCurve’ and ‘CCurve’ all need to evaluate their
supporting points, by a series of calls to ‘Point’. Any
such point object could be a bead on another curve.
‘LineSnake’, ‘ArcSnake’, ‘BSnake’ and ‘CSnake’ need
to evaluate u, u parameters of each of their supporting
magnet objects, by a series of calls to ‘Magnet’. Such a
supporting magnet could be a ring on another snake.
The several surface routines need to evaluate various
point, curve, snake or surface supports, according to
their individual constitutions; these are all done through
calls to the primary procedures.

Further cycles of recursion occur when, for example,
one curve supporting the surface being evaluated is a
snake on another surface. In this case the call sequence
passes through ‘Surface’ twice. It is easy to think up

Computer-Aided Design Volume 27 Number 11 November 1995 829

Relational geometric synthesis: J S Letcher Jr et al.

cases with arbitrarily long chains of dependency. All
such recursive possibilities are accommodated by the
program structure outlined above. Without recursion,
the program complexity and size would grow extremely
rapidly with the allowable depth of dependency; with
recursion, only stack space is required to indefinitely
extend the permitted depth of dependency.

The same polymorphism can be accomplished in an
object-orientated language by subclassing. In c+ +, the
abstract class Curve has a pure virtual member func-
tion Evaluate which receives a curve object and returns
a tabulation of point coordinates. Each specific curve
entity, implemented as a subclass of curve, has its own
peculiar set of data members, and provides its own
version of the Evaluate member function.

AVOIDANCE OF SURFACE-SURFACE
INTERSECTION AND TRIMMING

The third principal objective of RGS is achieved by
utilizing the dependency relationships outlined above,
and providing certain generally useful snake and sur-
face entities. Two distinct problems are addressed here:
(1) coercing two surface objects Y and Z to accurately
share a common edge, and (2) coercing one surface
object Z to end accurately on another surface object
Y, along a curve which is not necessarily an edge of Y.

Durable common edges between surfaces may be
achieved by using common data to define the adjoining
edges (Figure 6). For example, if the two surfaces are
blended surfaces, whose data includes boundary curves,
all that is required is to use the same curve object for
the corresponding edges of the two surfaces. Two lofted
surfaces of the same type will accurately join in the loft
direction if their corresponding master curves have
common endpoints along the edges where they adjoin.
The subcurve entity allows construction of common
edges where commonality does not extend along a
complete edge of either or both surfaces.

Alternatively, a surface Z having an edge which
accurately and durably lies on another surface Y can be
achieved by defining a snake S on Y, then using S for
an edge curve in the subsequent specification of Z
(Figure 7). This arrangement also provides an alterna-
tive solution for common edges, when S is specified to
be a linesnake lying along all or part of one edge of Y.

Figure 6 Surfaces accurately and durably joined by dependency on
common edge curves

Figure 7 A surface accurately and durably joined to a snake
embedded in another surface

It may be noted that two of these methods of forming
conjoined surfaces are in the pattern of designing the
curve of intersection first, then attaching the surfaces
to it. This is the inverse of the usual intersection-trim-
ming problem, and it should be no surprise that it is far
simpler to execute.

DETAILED EXAMPLE

Table 2 is a text representation of an example logical
model utilizing a variety of point, curve and snake
objects, and six interconnected surface objects of vari-
ous types, as defined and outlined above. Figure 8 is a
wireframe representation of the resulting absolute
model. The example comprises hull, deck and cabin
surfaces for a 30-foot sailing yacht design.

The example model has six surface objects: ‘hull’ and
‘deck’ are C-lofted surfaces; ‘cabin-fwd’, ‘cabin-side’,
and ‘cabin-aft’ are ruled surfaces; and ‘cabin-top’ is a
blended surface. The surfaces all have visibility 1, which
causes only the parameter lines u = constant to be
displayed. Eleven transverse sections through the model
are also displayed for purposes of visualizing the shapes.

‘Hull’ is a C-lofted surface with three B-spline mas-
ter curves ‘MCA’, ‘MCB’, ‘MCC’, each having four
absolute points as vertices. ‘Deck’ also has three mas-
ter curves; the first is the single point ‘Al’, the other
two are three-vertex B-spline curves ‘deck-beam’ and
‘transom’. The join between ‘hull’ and ‘deck’ is accu-
rate and durable because the C-splines at the adjoining
edges on each surface use the same data points, viz.
‘Al’, ‘Bl’, ‘Cl’, and therefore are identical curves.

The three ruled surfaces ‘cabin-fwd’, ‘cabin-side’,
‘cabin-aft’ are constructed in a similar fashion to one
another; each uses a snake on ‘deck as one edge,
providing an accurate and durable join to the ‘deck’
surface, and a relative curve dependent on that snake
as the second (upper) edge. The three snakes on ‘deck’
join each other accurately and durably because they
share common endpoint data, viz. magnets ‘dm3’ and
‘dm5’. The three relative curves ‘top-fwd’, ‘top-side’,
‘top-aft’ also join each other accurately and durably
because they are constructed using common end points,
viz. relative points ‘rp3’ and ‘rp5’. ‘cabin-side’ joins the
other two surfaces accurately because its end rulings
are the lines ‘dm3’ - ‘rp3’ and ‘dm5’ - ‘rp5’, which are
identical to end rulings on the adjoining surfaces.

The blended surface ‘cabin-top’ joins the three ruled
surfaces accurately because it uses their upper edge
curves ‘top-fwd’, ‘top-side’, ‘top-aft’ as data. Its fourth
side is a three-point C-spline ‘top-ctr’, which lies accu-
rately in the centre plane because each of its vertices
has a zero y coordinate.

830 Computer-Aided Design Volume 27 Number 11 November 1995

Relational geometric synthesis: J S Letcher Jr et al.

Table 1 Text representation of logical model for the example application

Rem 3 x 4 cleft hull with deck and cabin for CAD example
AbsPoint Al 14 1 0.00 0.00 3.60,
AbsPoint A2 14 1 1.00 0.00 1.41;
AbsPoint A3 14 1 2.50 0.00 -0.84;
AbsPoint A4 14 1 3.00 0.00 -0.90;
BCurve MCA 12 1 20 * 2 (Al A2 A3 A4);
AbsPoint Bl 14 1 15.00 5.84 2.64,
AbsPoint B2 14 1 15.00 6.00 0.54;
AbsPoint B3 14 1 15.00 3.90 - 1.20;
AbsPoint B4 14 1 15.00 0.00 - 1.44,
BCurve MCB 12 1 20 * 2 {Bl B2 B3 B4);
AbsPoint Cl 14 1 30.00 3.50 2.76;
AbsPoint C2 14 1 30.90 3.50 1.41;
AbsPoint C3 14 1 31.70 2.50 0.22;
AbsPoint C4 14 1 31.70 0.00 0.22;
BCurve MCC 12 1 20 * 2 (Cl C2 C3 C4);
CLoftSurf hull 10 2 10 2 10 3 0 3 {MCA MCB MCC);
AbsPoint transom0 14 1 29.80 0.00 3.00;
AbsPoint transom1 14 1 29.80 1.75 3.00;
BCurve transom 10 1 10 * 2 (Cl transom1 transom0);
AbsPoint deck-ctr 14 1 15.00 0.00 3.45;
AbsPoint deck-mid 14 1 15.00 2.70 3.45;
BCurve deck-beam 10 1 10 * 2 (Bl deck-mid deck-ctr};
CLoftSurf deck7 2 4 2 10 3 0 3 {Al deck-beam transom);
AbsMagnet dml 11 1 deck 1.00 0.27;
RetMagnet dm2 11 1 dml -0.37 0.00;
RelMagnet dm3 11 1 dml -0.65 0.03;
RelMagnet dm6 11 1 dml 0.00 0.43;
RelMagnet dm5 11 1 dm6 -0.80 0.00,
RelMagnet dm4 11 1 dm5 0.00 -0.20;
BSnake fp-fwd 11 1 10 * 2 (dml dm2 dm3);
BSnake fp_side 11 1 20 * 2 (dm3 dm4 dm5);
LineSnake fp_aft 11 1 10 * dm5 dm6;
RelPoint rpl 11 1 dml 2.00 0.00 1.30;
RelPoint rp3 11 1 dm3 2.00 0.00 1.10;
RelPoint rp5 11 1 drn5 - 0.20 -0.50 1.40,
RelPoint rp6 11 1 dm6 - 0.30 0.00 1.80;
Line linl 6 1 1 * rpl rp6;
AbsBead el 10 1 linl 0.500;
RelPoint rp7 11 1 el 0.00 0.00 0.20;
RelCurve top-fwd 11 1 10 fpfwd rpl rp3;
RelCurve top-side 11 1 20 fp-side rp3 rp5;
RelCurve top-aft 11 1 10 fp-aft rp5 rp6;
RuledSurf cabin-fwd 11 2 10 1 1 1 f-fwd top-fwd;
RuledSurf cabin-side 11 2 20 1 1 1 fp-side top-side;
RuledSurf cabin-aft 11 2 10 1 1 1 fp-aft top-aft,
CCurve top_ctr 11 1 10 * 2 {rpl rp7 rp6);
BlendSurfcabin-top 14 2 4 2 5 2 0 {top-fwd top-side top-aft top-ctr);
XContours stations 12 1 0 10 1.950 2.850;
EndModel

The example model as now defined can easily be
transformed, with preservation of its topology, into an
extremely wide variety of alternative shapes by chang-
ing the coordinates of absolute points, the offsets of
relative points, and the parameters of magnets. An
example modification which affects all six surfaces is to
increase the y coordinate of ‘Bl’. Following this change,
the connectivity and relative positioning of the several
surfaces is automatically preserved as the absolute
model is update (F@re 9). A further example modifi-
cation is to drag AbsMagnet ‘dml’ to a new position

Figure 8 Example of model of Table I, comprising six accurately
conjoined surface objects

(Figure 10). Because the other ‘dm?’ magnets are rela-
tive to this one, the entire cabin is transported to a new
location where it continues to join the deck precisely,
following update. The update and redisplay for these
example modifications takes approximately 3 s on a
486-50 PC.

CONCLUSIONS

We have presented the outline for a new logical frame-
work for CAD, offering several major advantages over
conventional CAD systems.

Figure 9 Example model following a change in the Y-coordinate of
point ‘Bl’

Computer-Aided Design Volume 27 Number 11 November 1995 831

Relational geometric synthesis: J S Letcher Jr et al.

Figure 10 Example model following change in the 1’ parameter of
magnet ‘dml’

The most important advantage is the capture of
qualitative and quantitative relationships between de-
sign elements, permitting rapid automatic update of a
design following changes in an underlying object. This
can greatly reduce design cycle time and labour, en-
abling a much more systematic and thorough refine-
ment and optimization of the complete design.

RGS provides a framework in which many curve and
surface types can comfortably coexist in a design sys-
tem, with programming effort increasing only linearly
with the number of entities supported.

To a considerable extent, RGS circumvents the com-
plications of surface-surface intersection and trimming,
by providing simple ways to build surfaces whose junc-
tions are accurate by construction, and are automati-
cally maintained through updates as qualitative rela-
tionships between the surface elements.

RGS also provides an extremely compact representa-
tion of its geometric models, including dependency
relationships, in a text format which may be viewed as a
geometry programming language.

RGS is readily extensible in many ways which invite
exploration; some of these will be developed in Part 2.

REFERENCES

1
2
3
4

5
6

7

8

Y

10

I1

12

Himelstein, C S US patent 4,633,616 (1986)
Draney, M R US patent 4,829,446 (1989)
Oosterholt, R US patent 4,868,766 (1989)
Howard, T L J, Hewitt, W T, Hubbold, R J and Wyrwas, K M A
Practical Introduction to PHIGS and PHIGS PLUS Addison-Wes-
ley, Reading (1991)
Ota, Y and Misato, A US patent 5,003,498 (1991)
MacKrell, J ‘Making sense of a revolution’, Comput. Graphics
World Vol 16 No 11 (1993)
Sutherland, I E ‘Sketchpad, a man-machine graphical communi-
cation system. Dissertation Massachusetts Inst. of Technology
(1963)
Snepp, D K and Pomeroy R C A Geometry System for Aerody-
namic Design (AIAA-87-2902) (1987)
Capron, W K and Smit, K L Advanced Aerodynamic Applications
of an Interactive Geometry and I/isualization System (AIAA-91-
0800) (1991)
Gentry A E Requirements for a Geometry Programming Language
for CFD Applications (NASA CP-3143) (1992)
Ross, D T ‘Origins of the APT language for automatically
programmed tools’: History of Programming Languages Confer-
ence, ACM SIGPLAN Notices, Vol 13 No 8 (1978) pp 59-99
Armit, A P ‘Computer systems for interactive design: The de-
scription of multipatch, multiobject and other existing systems’
in Piegl, L (Ed.) Fundamental Developments of Computer-Aided
Geomettic Modelling Academic Press, Boston, MA (1993)

I3

I4

IS

I6

I7

I8

IY

20

71

22

23

74

Armit, A ‘TAG - A high performance interactive 3D graphics
system’ Computers bzdust. Vol 3 (1982) pp 117-123
Snyder, J M Generatiw Modellingfor Computer Graphics and CAD
Academic Press, New York (1992)
Brown, C M ‘PADL-2: A Technical Summary’ IEEE CG&A Vol
2 No 2 (March 1982) pp 69984
Gossard, D C, Zuffante, R P and Sakurai, H ‘Representing
dimensions, tolerances and features in MCAE systems’ IEEE
CG&A Vol 8 No 2 (March 1988) pp 69-84
Abbott, I H and von Doenhoff, A E Theory of Wing Sections
Dover, New York (1959)
Tiller, W ‘Rational B-splines for curve and surface representa-
tion’ IEEE Trans. Comput. Graph. Appl. (1983) pp 61-69
Tenenbaum, A M, Langsaam, Y and Augenstein, M J Data
Structures Using C Prentice-Hall,,Englewood Cliffs, NJ (1990)
de Boor, C A Practical Guide to Splines Springer-Verlag, New
York (1978)
Farin, G Curves and Surfaces for Computer Aided Geometric
Design Academic Press, Boston, MA (1988)
Kreyszig, E Differential Geometry University of Toronto Press,
Toronto (19.59)
Nolan, T ‘Computer-aided design of developable hull surfaces’
Marine Technol. Vol 8 No 2 (1971) pp 233-242
LaBozzetta, W F, Cole, P E and Born, K E Interactiue Graphics
for Geometry Generation - A Program with a Contemporary
Design (AIAA-84-2389) (1984)

John Letcher is president and founder
of AeroHydro, Inc. in Southwest Har-
bor, Maine, USA. He receiwd his BS
(19631 in physics and PhD (19661 in
aeronautics and applied maths from the
California Institute of Technology. He
also holds a MS (1984) in naual archi-
tecture from the Uniwrsity of Michigan.
AeroHydro, Inc. is a leading deoeloper
of CAD applications for marine design
and shipbuilding, including geometric
design, hydrostatic and hydrodynamic

1 anatvsis, and performance prediction.

Michael Shook is Vice-President for
Engbreeting at AeroHydro, Inc. in
Southwest Harbor, Maine, USA. He
received a Bachelor of Liberal Studies
(interdisciplinary) from Boston Uniter-
sity in 1978. His interests include com-
puter languages, computer graphics,
geometric modelling, application frame-
works, and component technologies.

Simon Shepherd is a second-yeargradu-
ate student in Physics at Dartmouth
College. He receiwd his BA in physics
from Middlebury College in 1989, and
his MS in mechanical engineering from
the University of Washington in 1991.
From 1991 to 1993 he was employed on
the MultiSurfproject at AeroHydro, Inc.
His current interests are plasma physics,
fluid dynamics, numerical methods and
Lagrangian dynamics.

832 Computer-Aided Design Volume 27 Number 11 November 1995

