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Abstract. Analysis of the functional approximations used to transform between geo-
graphic and Altitude-Adjusted Corrected Geomagnetic (AACGM) coordinates reveals
that errors of >50 km can occur in the auroral and polar regions. These errors are the
result of efforts to better approximate AACGM coordinates near the magnetic equator
and the South Atlantic Anomaly. In these regions AACGM coordinates are not defined
and alternate coordinates have been used. This augmentation and emphasis on the so-
lution in regions near the equator result in spherical harmonic approximating functions
that are less accurate than need be in the auroral and polar regions. In response, a new
set of spherical harmonic coefficients have been derived that better represent AACGM
coordinates in these regions. These new AACGM coefficients are limited to below 2000
km in altitude in order to ensure accuracy. For altitudes above 2000 km, a magnetic field-
line tracing solution is recommended. A software package developed to take advantage
of the new AACGM coefficients provides the capability of tracing magnetic field lines
at any altitude, for improved accuracy. In addition, linear interpolation between 5-year
epochs is used to produce coordinates that vary smoothly over the entire period from
1965–present. The intent of this work is to provide a more accurate procedure for de-
termining AACGM coordinates in the auroral and polar regions for the study of mag-
netospheric and ionospheric processes.

1. Introduction

Altitude-Adjusted Corrected Geomagnetic (AACGM) co-
ordinates were originally developed for the purpose of com-
paring ground-based radar backscatter measurements from
locations in both hemispheres. As part of the Polar Anglo-
American Conjugate Experiment (PACE) a new coordinate
system was developed in order to better compare mea-
surements from two coherent backscatter radars located in
Goose Bay, Labrador and Halley Bay, Antarctica [Baker
and Wing , 1989]. The coordinate system, originally called
the PACE geomagnetic (PGM) coordinate system but later
referred to as AACGM, has been used to map numer-
ous ground-based and space-based measurements into mag-
netic coordinates for studies of plasma and electromag-
netic processes that span the thermosphere to the magneto-
sphere. Examples include ground-based radar observations
of plasma convection [Greenwald et al., 1990; Hanuise et al.,
1993; Ruohoniemi and Baker , 1998; Cousins and Shepherd ,
2010], magnetospheric pulsations [Ruohoniemi et al., 1991;
Samson et al., 1992], plasma density structures [Doe et al.,
1993; Rodger et al., 1994]; ground-based magnetometer, ri-
ometer, and optical measurements associated with iono-
spheric and magnetospheric processes [Samson et al., 1991;
Rosenberg et al., 1993; Rostoker et al., 1995; Lühr et al.,
1998]; and satellite measurements of particles and electric
currents to determine magnetospheric boundaries and large-
scale structures [Newell et al., 1991a, b; Sotirelis et al., 1998;
Watanabe et al., 1998; Waters et al., 2001; Korth et al.,
2010].

In practice, the coefficients of an expansion of spherical
harmonic functions are used to obtain AACGM coordinates
(and their inverse) for a given location, specified by its ge-
ographic coordinates and altitude above the surface of the
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Earth. These coefficients, while providing a smooth and con-
tinuous functional description of AACGM coordinates, are
in reality an approximation to the actual AACGM coordi-
nates. AACGM coordinates and the related corrected geo-
magnetic (CGM) coordinates [Gustafsson, 1984; Gustafsson
et al., 1992] are, in fact, undefined and discontinuous in cer-
tain regions near the equator, which causes difficulties in
obtaining an accurate solution. The expansion of spherical
harmonic functions provides a global solution for the map-
ping between geographic and AACGM coordinates, but the
degree to which the functional solution agrees with the un-
derlying data varies significantly over the globe.

Several developments related to AACGM coordinates
have been described in technical reports [Bhavnani and
Hein, 1994; Hein and Bhavnani , 1996; Heres and Bonito,
2007]. These developments have been focused primarily on
obtaining a functional approximation in the form of an ex-
pansion of spherical harmonic functions (hereafter referred
to as the AACGM coefficients, or simply the coefficients)
with improved accuracy near the South Atlantic Anomaly
(SAA) and in the region near the magnetic equator where
AACGM coordinates are undefined. In addition, the alti-
tude range over which the coefficients are valid was extended
from 600 km to 7200 km.

Since the original definition by Baker and Wing [1989]
new sets of coefficients have been determined using one of
the techniques described by Bhavnani and Hein [1994]; Hein
and Bhavnani [1996]; Heres and Bonito [2007]. Each set of
coefficients is valid for the 5-year epoch of the corresponding
International Geomagnetic Reference Field (IGRF) model
[c.f., Finlay et al., 2010]. Complete sets of AACGM coef-
ficients currently exist for the epochs from 1975 to 2010.
These coefficients, together with software historically pro-
vided by members of the Super Dual Auroral Radar Net-
work (SuperDARN) community, are used to map ground
and space-based measurements to and from AACGM coor-
dinates.

Comparison of the results obtained from using the ex-
isting sets of AACGM coefficients in mapping coordinates
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with those obtained by performing the AACGM mapping as
originally described by Baker and Wing [1989], reveal some
inconsistencies in the coefficients derived for various epochs,
suggesting that different techniques have been used. More
importantly, it is apparent that emphasis on the equatorial
region and higher altitudes have had the unintended con-
sequence of reducing the accuracy of AACGM coordinates
obtained from the coefficients at lower altitudes in regions
of middle to polar latitudes, particularly in the SAA sector.

Several questions regarding AACGM coordinates come to
mind, most importantly whether the AACGM coefficients
are themselves the coordinate system (as they seem to have
become) or whether they are just a useful approximation
of the underlying coordinate system, which requires a nu-
merical procedure to follow magnetic field lines in the IGRF
model. Other issues include whether an official and defini-
tive set of AACGM coefficients exists and whether they
should be re-derived in entirety when developments to the
technique are made.

The author takes the position that AACGM coordinates
are defined by following magnetic field lines and that coef-
ficients should be defined in a consistent and clear fashion
to best approximate the AACGM coordinates. The pur-
pose of this paper is to illustrate perceived weaknesses of
the current AACGM coefficients in representing the actual
AACGM coordinates at middle to polar latitudes. In ad-
dition, a technique is described that is used to obtain a
new set of coefficients that represent the AACGM coordi-
nates to a much better degree of accuracy in this region.
In order to maintain a suitable degree of accuracy for alti-
tudes extending to the upper end of low Earth orbit (LEO),
the altitude range of these new coefficients is limited to
2000 km. Above this altitude it is recommended that the
slower, but more accurate, field-line tracing is used. The op-
tion to perform field-line tracing at any altitude is included
in a software package available from the author’s web site
(http://engineering.dartmouth.edu/superdarn/aacgm.html).

The organization of the remainder of the paper is as fol-
lows: A brief description of the AACGM coordinate system
and history of developments is given in section 2. Section
3 describes the functional approximation and associated er-
rors of the conversion from geographic to AACGM coor-
dinates. The new AACGM approximating coefficients are
introduced and discussed in section 4. Approximations asso-
ciated with altitude dependence and the inverse transforma-
tion from AACGM to geographic are described in sections
5 and 6, respectively. A brief discussion of the coordinate
transformations is given in section 7 followed by a summary
in section 8.

2. AACGM Coordinate System

The AACGM coordinates of a given point, specified by
its geographic latitude (λg), longitude (φg) and altitude (h)
above the surface of the Earth, are determined by following
the magnetic field line from the geographic starting point to
the magnetic dipole equator. The AACGM coordinates are
then given by the latitude and longitude of the dipole field
line that connects the point on the magnetic equator to the
surface of the Earth.

In practice, magnetic field lines are determined numeri-
cally from the appropriate IGRF magnetic field model. The
magnetic field line is followed (or numerically traced) from
the starting position to the magnetic dipole equator; defined
by the best-fit, Earth-centered dipole [c.f., Gustafsson et al.,
1992]. The AACGM latitude (λm) and longitude (φm) are
then simply given by the latitude and longitude of the dipole
magnetic field line that connects this point with the surface
of the Earth. The dipole latitude can be determined from

the L-shell of the intersection point on the magnetic equator,
given by

cosλm = L−
1

2 (1)

Using this technique, all points on a given field line are mag-
netically connected and have the same AACGM coordinates.

Figure 1 illustrates the procedure for determining
AACGM coordinates (identical to CGM coordinates in this
case because the starting altitude is 0 km) for four different
locations on the geographic prime meridian (0◦ longitude.)
Three red lines represent the IGRF magnetic field lines em-
anating from the starting locations at 50◦, 40◦ and 30◦ lat-
itude. These field lines are followed to the magnetic dipole
equator, shown as a radial wireframe. The AACGM coordi-
nates of these points are given by the dipole coordinates of
the intersection point and shown by the green dipole field
lines.

Using this definition of AACGM coordinates, some geo-
graphic coordinates can be seen to have no corresponding
AACGM coordinate. In Figure 1, the IGRF field line em-
anating from the geographic location on the prime merid-
ian and 20◦ latitude (magenta line) intersects Earth’s sur-
face before it reaches the magnetic dipole equator. For this
reason the AACGM coordinates of this location are unde-
fined. An entire region around the IGRF magnetic dip equa-
tor (shown as an orange line) falls into this category. The
boundary of this region is shown in Figure 1 by solid yellow
lines on the Earth. In this region, the magnetic dip equator
is offset from the dipole equator and IGRF field lines inter-
sect the dipole equator below Earth’s surface. The region
where AACGM coordinates are undefined is referred to as
the undefined region or the forbidden region [c.f., Gustafsson
et al., 1992].

AACGM coordinates are typically determined using this
technique for each location on a regular, geographic grid.
The resulting data are in some cases tabulated [Gustafsson,
1984; Gustafsson et al., 1992] but more often are approxi-
mated by fitting an expansion of spherical harmonic func-
tions to the tabulated data [Baker and Wing , 1989; Bhav-
nani and Hein, 1994; Hein and Bhavnani , 1996; Heres and

Figure 1. Examples of determining AACGM coordi-
nates for four geographic locations along the prime merid-
ian. Red lines represent IGRF field lines emanating from
geographic starting locations at 50◦, 40◦, 30◦ latitude,
and ending at the Earth-centered magnetic dipole equa-
tor. AACGM coordinates are given by the coordinates
dipole field lines, shown in green. The magenta line shows
the IGRF field line starting at 20◦ latitude, which in-
tersects the surface of Earth before the dipole equator.
AACGM coordinates are undefined for such locations.
The region near the magnetic dip equator (orange line)
which includes these field lines is marked by yellow lines
on Earth’s surface.
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Bonito, 2007]. Following Baker and Wing [1989], the fitting
is done in rectangular Cartesian coordinates (xm, ym, zm) to
avoid numerical singularities associated with spherical polar
coordinates. The expansions are given by

xm =

N
∑

l=0

l
∑

m=−l

Ax
lmYlm(θg, φg)

ym =
N
∑

l=0

l
∑

m=−l

Ay

lmYlm(θg, φg)

zm =

N
∑

l=0

l
∑

m=−l

Az
lmYlm(θg, φg)

(2)

where the Ylm(θg, φg) are the standard, real spherical har-
monic functions and N is the order of the expansion. The
AACGM colatitude (θm) and longitude (φm) are then given
by

cos θm = zm

tanφm = ym/xm

(3)

Although Baker and Wing [1989] use 4th order expan-
sions, subsequent authors use 10th order expansions for equa-
tion 2. Note that all of the currently available AACGM
coefficients {Ax

lm, Ay

lm, Az
lm} are for 10th order expansions.

These coefficients are then used to evaluate equations 2 and
3 for arbitrary geographic positions (θg, φg).

In order to obtain a useful approximation over a range of
altitudes, this procedure is performed at a series of discrete
reference altitudes, where the starting location is specified
by the height h above the surface of the Earth. A set of
(N +1)2 coefficients are obtained for each Cartesian coordi-
nate (xm, ym, zm) at each reference altitude. It is possible
to use one of these sets of coefficients for a given altitude.
However, if the desired altitude is not one of the reference
altitudes, some form of interpolation or approximation must
be used. In practice, each of the 3(N + 1)2 coefficients are
approximated using the corresponding set of values deter-
mined at the reference altitudes.

Several possible approximation schemes have been used.
Baker and Wing [1989] derive coefficients at reference alti-
tudes corresponding to 0, 150, 300, 450 km and simply state
that interpolation may be used for altitudes up to 600 km,
which suggests that a polynomial (interpolating or fit) is
used to extend the altitude range beyond 450 km. Alterna-
tively, Bhavnani and Hein [1994] derive coefficients at 0, 300
and 1200 km, fit a quadratic polynomial to the coefficients
and extrapolation to altitudes up to 2000 km is deemed safe.
Finally, Hein and Bhavnani [1996]; Heres and Bonito [2007]
extend the altitude range to 7200 km by fitting a 4th order
polynomial to coefficients derived at more than 20 different
reference altitudes. Reference altitudes are weighted in such
a way as to only allow for small deviations at 0 km altitude
and to improve the fit in the 0–1200 km region.

Although some specific details of these altitude-
dependent schemes are not known, it is important to note
that they amount to yet another form of approximation to
the AACGM coordinates. Specifics of the altitude fitting are
discussed in more detail in section 5. In addition, the inverse
transformation (AACGM to geographic) and a few other de-
tails related to spherical harmonic function expansions are
also discussed in later sections. However, the accuracy to
which the current AACGM coefficients represent AACGM
coordinates is first investigated.

3. AACGM Functional Approximations

In order to quantify how well the current AACGM coeffi-
cients reproduce AACGM coordinates, the results obtained
from using the AACGM coefficients on a 1◦ latitude by 5◦

longitude geographic grid are compared to the results ob-
tained from determining the AACGM coordinates by nu-
merical field-line tracing on the same grid. A Runge-Kutta-
Fehlberg adaptive step-size, ordinary differential equation
(ODE) solver was developed in order to accurately follow
magnetic field lines in the IGRF model. Tests using a 1 km
fixed step-size Runge-Kutta 4th order ODE solver show that
limiting the maximum step-size to 50 r3 km (where r is the
distance from the origin in units of Earth radii RE) keeps
the overall difference observed using the adaptive step-size
solver to below 1 km for the entire grid. For this study
the upper limit on the accuracy of the numerical field-line
tracing is therefore considered to be ∼1 km.

Spherical harmonic functions are evaluated using the
standard AACGM software that has been available from the
Johns Hopkins University Applied Physics Laboratory since
the coordinate system was developed by Baker and Wing
[1989]. This software includes the AACGM coefficients for
the 5-year epochs from 1975 to 2010. Differences between
the AACGM coordinates obtained from the coefficients and
those obtained from the numerical field-line tracing are mea-
sured in great-circle distance on the surface of the Earth.
The observed differences are considered to be errors associ-
ated with using the AACGM coefficients to obtain the exact
(to within 1 km) AACGM coordinates. Note that in or-
der to determine the great-circle distance, it is necessary to
compute the inverse transformation from AACGM to geo-
graphic coordinates. This transformation is computed using
the adaptive step-size ODE solver, as described in section 6,
in order to minimize any additional numerical error.

Figure 2 shows several maps of the error associated with
the AACGM coefficients for an altitude of 0 km (i.e., the sur-
face of the Earth) for the representative years 1995, 2000,
2005, and 2010. The color scale indicates the magnitude of
the error from 0–100 km at each grid location. White in-
dicates locations where the error is larger than 100 km and
grey indicates that the AACGM coordinates are not defined
for this location, i.e., the forbidden region. Continent out-
lines are shown for reference and colored stars indicate the
locations of SuperDARN radar sites in both hemispheres.

It can be seen from the maps in Figure 2 that different
techniques were likely used to obtain the AACGM coeffi-
cients for these particular epochs. Figure 2a and 2b show
similar features suggesting the same technique was used for
epochs 1995 and 2000, however, the overall error appears
to be larger in 2000. Figure 2c shows much lower errors
overall in the polar regions, apparently at the expense of a
region of very large error just poleward of the undefined re-
gion (grey) at longitudes from -60◦ to 60◦. Finally, for the
current epoch, Figure 2d shows numerous regions of larger
(>50 km) error with lower error near ±50◦ and ±90◦ lati-
tude. In all cases errors exceeding 10 km are present over a
significant portion of the globe.

The source of the unexpectedly large errors, particularly
away from the equator, is a consequence of the difficulty
in fitting a continuous function through regions where the
solution does not exist. In particular, the large area that
extends from approximately -10◦ to 30◦ latitude and -60◦ to
60◦ longitude is a region where the AACGM coordinates are
undefined. In this region, the higher-order terms of the mag-
netic field model contribute significantly to the non-dipolar
nature of the field. The magnetic dip equator in this region
is significantly offset from the dipole equator, and magnetic
field lines originating in one hemisphere intersect the mag-
netic equator below the surface of the Earth (see Figure 1.)
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b)a)

d)c)

Figure 2. Error associated with using AACGM coefficients to obtain AACGM coordinates on geo-
graphic grid for 0 km altitude for the years (a) 1995, (b) 2000, (c) 2005 and (d) 2010. Color indicates
error in great-circle distance at the surface of the Earth. Regions shown in grey are areas where AACGM
coordinates are undefined. Colored stars indicate locations of SuperDARN radars.

Developments related to the technique used to determine
AACGM coefficients have primarily focused on a better rep-
resentation in this region, which is related to the SAA.
Several different approaches have been used to cope with
the difficulties associated with the forbidden region. While
Baker and Wing [1989] follow the approach used by Gustafs-
son [1984] and simply exclude a band of data within 24◦

of the equator, other authors have taken the approach of
adding additional data points to this region before deriving
the AACGM coefficients. Gustafsson et al. [1992] uses lin-
ear interpolation between the last defined CGM points and
the magnetic dip equator, defined in two different ways, to
specify the CGM latitude in the so-called forbidden region.
Tabulated data obtained using both methods of describing
the magnetic dip equator are included in appendices of their
paper.

More recent studies have augmented the tabulated
AACGM data using an alternative definition in forbidden
regions before deriving the AACGM coefficients. Bhavnani
and Hein [1994] and Hein and Bhavnani [1996] use a spline
fit through a band of ∼15◦ around the magnetic equator to
fill in missing grid points at each longitude. An additional
requirement that the spline fit latitude obeys the dip equa-
tor is imposed. Inspection of Figure 1 of Bhavnani and Hein
[1994] suggests that data points are either compressed in lat-
itude in this region or a finer sampling is used. Heres and
Bonito [2007] use a technique to perform additional smooth-
ing of interpolated data in the forbidden region by distribut-
ing points more uniformly according to spatial derivatives of
the grid.

In all cases, additional data have been added to the tabu-
lated AACGM data in the forbidden regions, i.e., the regions
where AACGM is not defined. It is because of the emphasis

on defining a solution in this region that the accuracy of the
AACGM coefficients has degraded at higher latitudes.

Figure 3 shows the Cartesian components of the AACGM
coordinates obtained from both the field-line tracing and the
AACGM coefficients over the full range of geographic lati-
tude. This example is taken along the prime meridian, i.e.,
0◦ longitude, which corresponds to the vertical dotted line
in each panel of Figure 2. Coordinates obtained from field-
line tracing are shown in the bottom panel as red crosses,
with solid red lines added for emphasis. Coordinates ob-
tained from the AACGM coefficients are overplotted using
blue circles.

The forbidden region at this longitude extends over the
latitude range -5◦ to 25◦ and is indicated by the solid grey
area. The difficulty in approximating AACGM coordinates
in this region can most clearly be seen in the z component
where the data are discontinuous across the forbidden re-
gion. Although the interpolated data used to augment the
AACGM data are not known, and therefore not shown, co-
ordinates obtained from the AACGM coefficients show that
they strongly influence the solution in this region. Close in-
spection of these curves reveals that the solution oscillates
about the field-line traced data throughout the full latitude
range. The upper panel of Figure 3 shows the difference
between the two normalized coordinates. While the magni-
tude of this error decreases with distance from the forbid-
den region, the oscillation is apparent. Note that the more
weighting or emphasis that is placed on data in the forbid-
den region, the larger the resulting oscillations will be.
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4. AACGM Coefficients

In this study, a different approach is used to derive a new
set of AACGM coefficients. This approach can be summa-
rized by the principle that a set of coefficients be obtained
which most accurately represent the AACGM coordinates,
ideally over the largest area possible, but with particular
interest in the middle to polar latitude region and altitudes
up to 2000 km.

The main differences in this technique are that in order to
stay true to the AACGM coordinates, the AACGM data are
in no way augmented, i.e., no additional points are added
to the forbidden region. The solution is simply undefined in
this region. As discussed in section 3, the addition of data to
the forbidden region causes undue error at higher latitudes.
This problem is avoided by simply using AACGM data on
a regular geographic grid, where it is defined.

Secondly, a normalization scheme that is different from
previous studies is used. Equation 2 does not guarantee that
the resulting points are confined to the surface of a sphere
and points must therefore be normalized to the unit sphere.
Instead, xm and ym from equation 2 are used to determine
zm by requiring that the position be located on the surface
of the Earth, i.e., zm =

√

1− x2
m − y2

m, where the Cartesian
coordinates have been normalized by the Earth radius. Note
that the coefficients Az

lm are still used but only to determine
the sign of zm in order to locate each point in the correct
hemisphere.

This simple modification leads to significantly improved
accuracy of the resulting AACGM coefficients over the en-
tire range of latitudes. It is worth acknowledging that this
strategy leads to a solution that is not always defined con-
tinuously along a given meridian (i.e., zm can be imaginary
where x2

m+ y2

m > 1 in the forbidden region), but argue that
the benefits of a much better fit outweigh this disadvantage
in many situations where conversions from geographic to
AACGM coordinates are used.

Figure 4 shows the result of the new AACGM coefficients
along the prime meridian, as in Figure 3, i.e., 0 km altitude
and for the year 2000. In this case AACGM coordinates ob-
tained from using the new AACGM coefficients are shown

Figure 3. Cartesian coordinates, obtained from field-
line tracing (red) and AACGM coefficients (blue) along
the prime meridian in Figure 2b. Solid grey indicates the
forbidden region. Errors are shown on a logarithmic scale
for each coordinate in the top panel.

in green. Comparing to Figure 3 the agreement with the
AACGM data is significantly improved over the entire lat-
itude range. Error for each coordinate is shown in the top
panel with values from Figure 3 included for direct compar-
ison. While variation is observed in the use of both sets of
coefficients, the error obtained from the new coefficients is
1–2 orders of magnitude lower than that resulting from use
of the current coefficients. Similar results are observed for
all longitudes.

New sets of AACGM coefficients have been determined
using this new technique. For each 5-year epoch a grid of
1◦ latitude and 5◦ longitude is used. A one-to-one mapping

Figure 4. Cartesian coordinates obtained from field-line
tracing (red) and new AACGM coefficients (green) along
the prime meridian in Figure 2b. Solid grey indicates the
forbidden region. Errors are shown on a logarithmic scale
for each coordinate in the top panel.

Figure 5. Distribution of errors in AACGM coordinates
using the existing and new AACGM coefficients from Fig-
ures 2 and 6. Errors are binned on a logarithmic scale.
Blue and red colors represent the existing and new coef-
ficients, respectively. Solid histograms represent data for
the year 2000. Average errors are indicated at the top of
the figure by small vertical lines.
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b)a)

Figure 6. Error maps identical to Figure 2b and 2d but using the new AACGM coefficients and the
color scale range is 0–10 km.

from geographic to AACGM coordinates is obtained using
the adaptive step-size ODE solver for each geographic grid
point. These data are then used to determine the AACGM
coefficients from equation 2. A standard singular value de-
composition scheme is used to obtain the coefficients {Ax

lm,
Ay

lm, Az
lm} for each 5-year epoch.

As was the case for the existing coefficients, the new co-
efficients are used to determine the corresponding AACGM
coordinates on the same geographic grid. Error maps at 0
km altitude for the years 2000 and 2010 are shown in Figure
6 using the same format as that in Figure 2, with the ex-
ception that the color scale is an order of magnitude smaller
(0–10 km) in order to show where errors exist. Note that
maps for the other years are nearly identical to those shown.

Comparison of the corresponding maps in Figures 2 and
6 confirms the significant improvement in the accuracy re-
alized over the entire globe when using the new coefficients
to determine AACGM coordinates. With the exception of a
region extending a few degrees from the forbidden regions,
the observed errors are limited to ∼1 km.

Histograms of the distribution of errors on a logarithmic
scale are plotted in Figure 5 for the four years shown in
Figures 2 and 6 (1995 and 2005 data are included). Blue
and red histograms represent the errors associated with us-
ing the existing and new AACGM coefficients, respectively.
Average errors are indicated at the top of the figure with
vertical lines matching the color of the corresponding his-
togram below. To emphasize the difference between the two
techniques a solid histogram is shown for each set of coeffi-
cients for the year 2000.

Average errors using the existing coefficients are in the
range of a few to tens of kilometers while the corresponding
average errors using the new coefficients are <1 km. Large
errors exceeding 100 km can result from using the existing
AACGM coefficients and extend to middle latitudes; e.g.
Figure 2b. Using the new coefficients, only a small portion
of the data have errors that exceed 1 km. Inspection of Fig-
ure 6 reveals that these larger errors are limited to a small
region poleward of the forbidden region.

Overall, the new AACGM coefficients show a significant
improvement over the existing coefficients. Errors are 1–2
orders of magnitude lower and limited to less than ∼1 km
over the region of interest. A potential drawback associated
with the new coefficients is that they are undefined in the
so-called forbidden region and therefore do not provide a
continuous solution throughout this region. It is worth re-
peating that the intent of this work is to provide a set of
approximating functions (AACGM coefficients) that repre-
sent AACGM coordinates to a high degree of accuracy.

5. Altitude Dependence

Attention is now turned to the altitude dependence of
the AACGM coordinates. As described in section 2 the pro-
cedure for determining AACGM coefficients at the surface
of the Earth (0 km altitude) is repeated at multiple refer-
ence altitudes in order to obtain a set of coefficients that are
then either interpolated or fit to a polynomial function in
altitude.

Figure 7 shows the Cartesian AACGM coordinates ob-
tained from both sets of coefficients (old and new) at an
altitude of 2000 km for the prime meridian and in the same
format as Figures 3 and 4. Here, both sets of coordinates are
combined with blue and green indicating the old and new co-
efficients, respectively. AACGM coordinates obtained from

Figure 7. Cartesian coordinates obtained from field-line
tracing (red) and old (blue) and new (green) AACGM co-
efficients along the prime meridian for the year 2000 and
for 2000 km altitude. The format is similar to Figures
3 and 4 with a hatched area added to indicate the re-
gion where AACGM latitudes are not accessible at this
altitude.
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field-line tracing are again shown in red, but are admittedly
difficult to see at most latitudes due to the accuracy of the
values obtained from both sets of coefficients. Errors asso-
ciated with these values are shown in the upper panel on a
logarithmic scale.

One immediate difference observed at this altitude is the
large discontinuity in the z coordinate near the geographic
equator and indicated by hatching in the figure. This region
represents the range of AACGM latitudes which are not ac-
cessible for the given altitude; 2000 km in this case. In this
region the magnetic equator is located below the altitude
where magnetic field-line tracing begins and these latitudes
are, therefore, not attainable. This region is determined by
the latitude of the dipole field line with L-shell value equal
to the geocentric distance above the surface of the Earth,
(RE + h)/RE . Latitudes below λ0, given by

RE = (RE + h) cos2 λ0 (4)

are not accessible for the altitude h, and a discontinuity in
the z coordinate exists over this range. For the altitude
h = 2000 km, shown in Figure 7, λ0 = 29.3◦.

In order to minimize the undesirable effects associated
with approximations near such a discontinuity, Bhavnani
and Hein [1994]; Hein and Bhavnani [1996]; Heres and
Bonito [2007] use a simple mapping given by

cos λdipole =

(

RE + h

RE

) 1

2

cos λm , (5)

where the magnetic latitude λm is mapped to what the au-
thors refer to as an “at-altitude dipole coordinate system”
given by λdipole. In this “at-altitude coordinate system”, λ0

maps to the equator, effectively eliminating the discontinu-
ity. In these studies, AACGM coefficients are derived using
“at-altitude coordinates” and the inverse mapping is used
to determine AACGM coordinates from the “at-altitude co-
ordinates”.

Because the z coordinate is computed from the x and y
coordinates this additional mapping is not required and “at-
altitude coordinates” are, therefore, not used in the calcu-
lations. Inspection of Figure 7 confirms that the functional
representation all three Cartesian coordinates is sufficiently
accurate at non-zero altitudes when using the new coeffi-
cients. The upper panel shows that errors resulting from
the new coefficients are again 1–2 orders of magnitude lower
than those resulting from the old coefficients. A similar re-
duction of error is observed at all altitudes from 0–2000 km.

As with the 0 km altitude comparisons, the same analysis
is performed at 2000 km by comparing AACGM coordinates
over the same geographic grid. Figure 8a shows the result-
ing error when using the existing AACGM coefficients for
the year 2000. The color scale is the same as that used in
Figure 2. Comparing the two altitudes, it can be seen that
overall errors have decreased at 2000 km altitude, where the
field becomes more dipolar and the solution becomes easier
to approximate. Errors exceeding 50 km, however, are still
observed in some regions.

For comparison, Figure 8b shows the resulting errors
when using the new AACGM coefficients for the year 2000
at 2000 km altitude. The color scale is the same as that
used in Figure 6 and an order of magnitude lower than in
Figure 8a. In this case the errors are again lower than at
0 km altitude and significantly lower than those resulting
from the existing AACGM coefficients.

In order for AACGM coordinates to be determined from
AACGM coefficients at a continuous range of altitudes, some
form of altitude-dependence is required of the coefficients.
As described briefly in sections 2 and 4, the procedure to de-
termine a set of AACGM coefficients for a particular altitude

is repeated for several reference altitudes. The coefficients

needed for a general altitude h are then determined by one

of several techniques. Baker and Wing [1989] suggest that

simple linear interpolation of the coefficients at the refer-

ence altitudes can be used. Subsequent studies have used

functional forms of the coefficients to represent their alti-

tude dependence. Bhavnani and Hein [1994] use a quadratic

polynomial to interpolate the coefficients at reference alti-

tudes, whereas Hein and Bhavnani [1996]; Heres and Bonito

[2007] fit a quartic polynomial to the reference altitude co-

efficients with weighting that limits the amount of variation

in the fit at 0 km altitude and improves the fit in the 0–1200

km region. However, the exact weighting used by Hein and

Bhavnani [1996]; Heres and Bonito [2007] is unknown, as

well as the locations of the 24 reference altitudes used by

Hein and Bhavnani [1996].

In addition to the use of increasingly higher-order polyno-

mials by authors, the altitude range over which the AACGM

coefficients are valid has increased from 600 km [Baker and

Wing , 1989] to 2000 km [Bhavnani and Hein, 1994] to its

current value of 7200 km [Hein and Bhavnani , 1996; Heres

and Bonito, 2007]. As several authors state, the coefficients

typically vary quite smoothly in altitude, which is used as

justification for performing a low-order polynomial approx-

imation. Note, however, that over the 7200 km altitude

range many of the coefficients vary enough that a quartic

fit is insufficiently accurate over the entire range, particu-

larly at altitudes below ∼1000 km. It is for this reason that

Hein and Bhavnani [1996]; Heres and Bonito [2007] use a

weighted fit to improve the accuracy in this region. Without

knowledge of the weighting used it is not possible to verify

the accuracy of their techniques.

After studying the altitude behavior of the coefficients, a

similar approach is taken here, however, the altitude range

is limited to 2000 km. The limitation is deemed necessary in

order to improve accuracy of the coefficients in the altitude

range that includes the upper limit of LEO. Above 2000 km,

AACGM coordinates are still defined, but they should be

obtained using field-line tracing in order to ensure accuracy.

Figure 8. Altitude range (red lines) and reference al-
titudes (blue vertical line-segments) used to determine
the altitude dependence of AACGM coefficient sets for
the different studies. Details and abbreviations for the
studies are listed in Table 1.
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b)a)

Figure 9. Error associated with using AACGM coefficients to obtain AACGM coordinates for 2000 km
altitude. The format is the same as for Figures 2b and 6b. The color scales are 0–100 km and 0–10 km
for the (a) old and (b) new AACGM coefficients.

Table 1. Altitude Dependence of AACGM Coefficients

Approximation Altitude
Study Reference Altitudes (km) Scheme Range (km)

BW89a 0, 150, 300, 450 interpolation 0–600

BH94b 0, 300, 1200 quadratic 0–2000

HB96c 24 unspecified values weighted 0–7200
between 0–7200 km quartic fit

HB07d 0, 100, 200, 300, 400, weighted 0–7200
500, 600, 800, 1000, quartic fit
1200, 1600, 2000, 2500,
3000, 3500, 4000, 4500,
5000, 6000, 7200

SS14e 0, 50, 100, 150, 200, 250, modified 0–2000
300, 350, 400, 450, 500, quartic fit
550, 600, 650, 700, 750,
800, 850, 900, 950, 1000,
1100, 1200, 1300, 1400,
1500, 1700, 2000

a Baker and Wing [1989]
b Bhavnani and Hein [1994]
c Hein and Bhavnani [1996]
d Heres and Bonito [2007]
e this study

Following Hein and Bhavnani [1996]; Heres and Bonito
[2007], a quartic fit is used to approximate the altitude de-
pendence of the coefficients for this study. However, the ref-
erence altitudes used here differ from previous studies and
are specified in Table 1 and shown in Figure 9. The refer-
ence altitudes selected for this study are spaced such that
they better describe the altitude behavior of the coefficients
at lower altitudes, where more rapid changes are most of-
ten observed. For comparison, the altitude dependence of
each study is also summarized in Table 1 and reference alti-
tudes are indicated by blue vertical line-segments in Figure
9. Note that the locations of the unspecified reference alti-
tudes for the Hein and Bhavnani [1996] study are indicated
by question marks in Figure 9.

One additional point that is important to mention is that
this author feels it important that the AACGM coordinates
derived from the coefficients at 0 km altitude should be an
accurate representation of CGM coordinates [Gustafsson,
1984; Gustafsson et al., 1992]. For this reason a require-
ment is made that the quartic fits retain the value of the
coefficients at 0 km altitude and fit the remaining coeffi-

cients of the quartic to the AACGM coefficients at the set
of reference altitudes given in Table 1.

Figure 11 shows the altitude dependence of two repre-
sentative coefficients (Ax

2,0 and Ay
5,−5

) over the 0–2000 km
altitude range. The value of these particular coefficients at
each reference altitude is shown by a black circle. The solid
orange line in each panel represents the quartic fit to the
reference altitudes. It is the coefficients of the 3(N + 1)2

quartic fits that constitute the set of AACGM coefficients,
which are then used to determine AACGM coordinates in
the same manner as Hein and Bhavnani [1996]; Heres and
Bonito [2007]. These coefficients provide a means for de-
termining AACGM coordinates over a continuous range of
altitudes h from 0–2000 km.

As stated by previous authors, the coefficients vary quite
smoothly and the quartic fits are quite accurate, as evi-
denced by the near collocation of the black circles and the
orange lines. Differences between the quartic fit and the val-
ues at reference altitudes are represented by orange crosses
on a logarithmic scale in the bottom panels of Figure 11.

Two additional quartic fits are shown in Figure 11 as dot-
ted lines. These fits are performed using additional reference
altitudes that extend to 7200 km (not shown.) One of the
additional fits includes the 0 km reference altitude and the
other requires that the fitted polynomial pass through the
value at 0 km. Errors for both additional fits are represented
in the lower panels by blue and purple crosses, respectively.

Justification for limiting the altitude range to 2000 km is
evidenced by the relatively poor fit of the polynomials that
use the full 7200 km altitude range, particularly over the
altitude range shown. The lack of agreement is particularly
evident in Figure 9b, were the additional polynomial fits
poorly represent the observed values. Note, however, that
the absolute errors are equally large for the Ax

2,0, despite the
apparent agreement.

Extending the altitude range to 7200 km has clearly re-
duced the accuracy of the polynomial fits. While Hein and
Bhavnani [1996]; Heres and Bonito [2007] use unspecified
weights to improve the accuracy of the fits at lower altitudes,
it is beyond the scope of this work to fully assess the impact
of various weighting schemes on the accuracy of the fits over
the entire altitude range. Instead, in keeping with the aim of
this work, the altitude range has been limited to 2000 km in
order to maintain accuracy of the functional approximations
used to describe the altitude dependence of the coefficients
over this range. The improvement is clearly demonstrated
by the overall lower error observed in the polynomials fits
to the limited altitude range.
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a) b)

Figure 10. Altitude dependence of two AACGM coefficients: (a) A2,0 and (b) A5,−5 for each Cartesian
component. Values obtained at reference altitudes are indicated by black circles. Orange solid lines
represent the quartic fits to reference altitudes over the range shown. Dotted lines represent quartic fits
using reference altitudes that extend to 7200 km. One fit includes the value at 0 km altitude (blue) and
the other passes through this value (purple). Errors associated with the fits are shown in the lower panels
as crosses in the corresponding color of the fit.

While error maps shown in Figures 6 and 8b demonstrate
that AACGM coefficients with relatively low errors can be
obtained at discrete altitudes, it is the quartic functions that
approximate the altitude dependence of the coefficients that
are used in practice. In order to demonstrate sufficient accu-
racy of the altitude-dependent coefficients, further investiga-
tion is performed on the following representative altitudes:
0, 333, 600, 1850 km. Two of these altitudes are part of the
set of reference altitudes, the other two are at the lower and
upper ends of the altitude range.

For each of these representative altitudes field-line tracing
is performed to determine the AACGM coordinates for each
point on the geographic grid. AACGM coordinates are also
determined using the old and new AACGM coefficients, and
errors are then computed in the same manner as described
in section 3. Instead of showing error maps, as before, his-
tograms of the distribution of observed errors are computed

Figure 11. Distribution of errors in AACGM coordi-
nates using the existing and new AACGM coefficients
for altitudes 0, 333, 600, 1850 km. Errors are binned on
a logarithmic scale. Blue and red colors represent the ex-
isting and new coefficients, respectively. Solid histograms
represent data for 0 km altitude and are identical to the
corresponding histograms in Figure 5. Average errors are
indicated at the top of the figure by small vertical lines.

and binned on a logarithmic scale in the same manner as
shown in Figure 5. The year 2000 has been selected in order
to make comparisons to other figures.

Figure 10 shows error histograms for each of the four rep-
resentative altitudes. Red and blue colors indicate errors as-
sociated with the new and old coefficients, respectively. The
solid histograms are chosen to emphasize errors at 0 km al-
titude. Because the AACGM coefficients at 0 km altitude
have been included when performing the quartic coefficient
fits, the solid histograms are identical to those in Figure 5.
The other histograms correspond to errors associated with
using the altitude-dependent coefficients and are not neces-

Figure 12. Geographic Cartesian coordinates ob-
tained from field-line tracing (red) and old (blue) and
new (green) inverse AACGM coefficients along the 60◦

AACGM meridian at the surface of the Earth. The for-
mat is similar to Figure 7.
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sarily the same as those obtained from using the AACGM
coefficients at these altitudes. Comparison of AACGM co-
ordinates obtained from both the altitude-dependent coef-
ficients and the actual AACGM coefficients at these same
altitudes, reveals that differences are less than 1 km in all
cases when using the new coefficients. It is not possible to
make a similar statement about the old coefficients because
the AACGM coefficients at the reference altitudes are not
known.

To summarize the altitude dependence of AACGM co-
efficients, the altitude range over which the coefficients are
valid has been limited to 2000 km. AACGM coefficients are
determined at 28 reference altitudes (shown in Table 1 and
Figure 9) and quartic polynomial fits are performed on each
coefficient. The accuracy of these altitude-dependent coeffi-
cients is characterized by errors that (1) are typically below
1 km (with the exception of latitudes within a few degrees
of the forbidden region), (2) are 1–2 orders of magnitude
smaller than those associated with the existing coefficients
and (3) decrease in magnitude with altitude (as shown in
Figure 10).

6. Inverse Transformation

In order to obtain geographic coordinates from AACGM
coordinates an inverse transformation is required. Follow-
ing the definition of AACGM coordinates in section 2, ge-
ographic coordinates are determined by following the mag-
netic field line from the starting point on the magnetic equa-
tor to the desired altitude h. The final position gives the
desired geographic coordinates. The starting point is given
by the coordinates of the dipole field line that connects the
surface of the Earth and the magnetic equator.

Previous studies have used various techniques to deter-
mine a set of mapped data at different altitudes from which
to determine the corresponding inverse AACGM coefficients.
These inverse coefficients are derived in the same man-
ner as those of the forward transformation (geographic to
AACGM). In this case the geographic Cartesian coordinates
(xg, yg, zg) are written as an expansion of spherical har-
monic functions in the magnetic co-latitude and longitude

Figure 13. Geographic Cartesian coordinates for the
60◦ AACGM meridian in the same format as Figure 12
but for 2000 km altitude.

variables (θm, φm), following equation 2. The set of coef-
ficients for the inverse transformation {Bx

lm, By

lm, Bz
lm} are

again determined by fitting a quartic function to the coef-
ficients determined at the same references altitudes.The set
of forward (A) and inverse (B) coefficients comprise a com-
plete set of AACGM coefficients that are used to convert to
and from AACGM coordinates.

Investigation of the inverse transformation reveals a few
difficulties. The first challenge is related to the SAA and
the associated discontinuity observed at the magnetic equa-
tor (see Figures 3 and 4). Figure 12 shows the normalized
geographic coordinates (xg, yg, zg) as a function of AACGM
latitude (λm) for the 60◦ AACGM meridian, in the same for-
mat as Figure 7. At this meridian the discontinuity at the
magnetic equator is pronounced in the geographic coordi-
nate data (shown by red lines and obtained from tracing
magnetic field lines following the inverse process.)

In the forward transformation the discontinuity was seen
only in the zm coordinate, i.e., the magnetic latitude. The
solution to use the values of the other two coordinates and
the condition that the three components be confined to the
surface of the Earth, worked well for that case. For the in-
verse transformation, however, the discontinuity appears in
each component (xg, yg, zg) because of their dependence on
θm. For the inverse case it is not possible to avoid fitting an
expansion of spherical harmonic functions to a discontinuous
set of data. In order to minimize the resulting oscillations,
a limited range of latitudes near the discontinuity are ex-
cluded from the data used in the fittings. Because it leads
to a slightly overall better fit, the same dataset used for the
forward transformation is used for the inverse transforma-
tion, i.e., a regular geographic grid mapped to an irregular
AACGM grid.

Experimentation reveals that excluding a range of lati-
tudes that extends poleward of the forbidden region (in ge-
ographic coordinates) reduces the errors observed in the fit-
tings over the full range of latitudes. Beyond some range,
however, the errors begin to increase. It is found that ex-
cluding data that extends 10◦ poleward of the forbidden re-
gion for each longitude leads to a reasonable compromise be-
tween reducing the average and maximum errors observed.
This same data exclusion is used for all reference altitudes.

Figure 12 shows the resulting fits for the 60◦ AACGM
meridian in addition to the errors associated with the fits.
Near the discontinuity errors are seen to be quite large,
which is expected. However, the resulting errors are some-
what reduced from the existing AACGM inverse coefficients
for magnetic latitudes poleward of the equator.

Figure 14. Distribution of errors in determining geo-
graphic coordinates using the existing and new AACGM
inverse coefficients for altitudes 0, 600, 1200, 2000 km.
Errors are binned on a logarithmic scale and the format
is the same as Figure 10.



SHEPHERD: AACGM X - 11

b)a)
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Figure 15. Error associated with using AACGM inverse coefficients to obtain geographic coordinates
for (a–b) 0 km altitude and (c–d) 2000 km altitude. The color scale is the same for the (a,c) old and
(b,d) new AACGM coefficients.

An additional complication to the inverse transformation
is the fact that AACGM coordinates are not defined at mag-
netic latitudes below λ0, given by equation 4, for non-zero
altitudes h. Figure 13 shows the Geographic Cartesian coor-
dinates for the same 60◦ AACGM meridian as Figure 12 but
for an altitude of 2000 km. At this altitude λ0 = 29.3◦, as
shown by the hatched region in Figure 13. In the case of the
inverse transformation there is an added benefit to using the
“at-altitude dipole coordinate system” given by equation 5,
which is not the case for the forward transformation. The
reduction in error when using the new inverse coefficients
can be seen in the top panel of Figure 13 along with the
errors associated with the existing inverse coefficients.

Figure 15 shows error maps in the same format as Fig-
ure 8 but for the inverse transformations at altitudes of 0
km and 2000 km. The errors again are the difference in
the great circle distance between the position obtained from
the AACGM inverse coefficients and the field-line tracing,
i.e, the actual coordinates (to within the ∼1 km accuracy
discussed in section 3.)

The color scales are the same for each panel and show a
modest improvement in the error associated with the new
AACGM inverse coefficients. The reduction in error is not
as large as was the case in the forward transformation and
relatively large errors are seen to occur below ∼30◦, partic-
ularly near the SAA region; 30◦–120◦ AACGM longitude.
Above ∼30◦ (marked with dashed lines) errors in the tens
of kilometers are visible. While these errors are larger than
those observed in the forward case, they are a definite im-
provement over the existing AACGM inverse coefficients,
where errors are more than twice as large.

Figure 14 shows the distribution of errors from the data
shown in Figure 15. In addition, errors are computed for in-

termediate altitudes at 600 km and 1200 km. The reduction
in overall errors is evident when compared to the existing
inverse coefficients. As the histograms show, the overall er-
ror decreases with increasing altitude. It should be pointed
out that the tail of the distribution with large errors (>100
km) corresponds to magnetic latitudes below ∼30◦ and the
majority of errors above this latitude are <10 km in magni-
tude.

7. Discussion

To this point the accuracy with which the AACGM coef-
ficients, and their inverses, produce the desired coordinates
have been analyzed. Both sets of coefficients have been
shown to have improved errors over the existing AACGM
coefficients. A final comparison is performed in order to
determine the extent to which the transformations, using
the forward and inverse coefficients, negate each other. For
this test conversions from geographic to AACGM and back
to geographic coordinates are performed using the AACGM
coefficients. Errors are then determined for each geographic
grid point as the difference between original and computed
coordinates in great circle distance.

Figure 16 shows the resulting errors for a representative
year (2000) and at 0 km altitude. Figure 16a and 16b cor-
respond to the process using old and new AACGM coeffi-
cients, respectively. In both cases the errors are relatively
low (>50 km) with the exception of the longitude sector as-
sociated with the SAA; -60◦ to 60◦. In this region elevated
errors extend to the poles but with decreasing amplitude.
Errors are, in general, larger using the old AACGM coeffi-
cients, with the exception of a narrow band in latitude near
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Figure 16. Error associated with conversion from geographic to AACGM and back to geographic co-
ordinates using (a) old and (b) new AACGM coefficients, (c) new AACGM coefficients for the forward
transformation and field-line tracing for the inverse, and (d) field-line tracing for both transformations.

the magnetic equator. It is the attempt at reducing the error
in this region that appears to be the main focus of the more
recent studies. However, increased accuracy in this region
has come at the expense of accuracy in the middle to polar
latitude regions.

A final comment is that some studies appear to use this
type of test to validate the accuracy of the AACGM co-
efficients. It is important to note that such a test merely
confirms the degree of invertibility of the transformation.
This author maintains that the coefficients are intended to
represent the AACGM coordinates (and their inverse) as
accurately as possible and comparisons of results obtained
from using the coefficients to those obtained from accurate
field-line tracing are more meaningful performance metrics.

Note that while errors are extremely low (<10 km) using
the new AACGM coefficients for the forward transforma-
tion, they are somewhat unsatisfyingly large for the inverse
transformation, particularly below 30◦. One alternative for
reducing the overall accuracy is to use field-line tracing for
the inverse transformation. Figure 16c shows the resulting
error when AACGM coefficients are used for the forward
transformation (geographic to AACGM) and field-line trac-
ing is used for the inverse (AACGM to geographic.) Note
that color scale has been reduced to 10 km in order to reveal
errors that are due entirely to the forward transformation.

For situations where the highest degree of accuracy is nec-
essary, field-line tracing in both directions is recommended.
Although it is computationally more expensive than evaluat-
ing an expansion of spherical harmonic functions, errors as-
sociated with field-line tracing are <1 km. Figure 16d shows
the errors resulting from performing the coordinate trans-

formation in both directions using field-line tracing, which
are <1 km everywhere.

The examples chosen here are for 0 km altitude, where er-
rors are generally largest. Similar behavior is observed over
the altitude range 0–2000 km with overall errors decreasing
with altitude as the magnetic field becomes more dipolar and
the difficulties associated with functional representations of
discontinuous data are reduced.

One final point is related to the 5-year period at which
IGRF and AACGM coordinates are updated. AACGM co-
efficient sets have been derived for the 5-year epochs be-
tween 1965–2015. For the time period after the latest epoch
(2010), secular variations of the IGRFmodel are used to pro-
vide extrapolation for up to another five years beyond this
date [Finlay et al., 2010]. A linear interpolation of these co-
efficients in time between adjacent 5-year epochs has been
implemented in the software package developed to exploit
the new AACGM coefficients in order to improve fidelity
throughout the full epoch range.

Figure 17 shows the AACGM latitude of a single geo-
graphic location for each year over the period of 1965–2015.
The location chosen is the potential future site of a pair of
SuperDARN radar in Graciosa, Azores (39.033◦ N, 28.036◦

W). The altitude selected is 600 km, a typical height for the
topside ionosphere. While radar backscatter most certainly
occurs at higher latitudes than the location of the radar, this
location is simply being used as a representative position of
interest.

The AACGM coordinates of this location, determined by
field-line tracing, are shown in red in Figure 17. The coor-
dinates obtained from the two sets of AACGM coefficients,
old and new, are show in blue and green, respectively. The
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existing AACGM software uses only the 5-year epoch coeffi-
cients and the AACGM coordinates are, therefore, constant
over the duration of each epoch. At this particular location
the AACGM latitude is changing at a rate of ∼0.1◦ yr−1,
which leads to the possibility of an additional error of ∼0.5◦

in latitude over a given 5-year epoch and demonstrates the
need for interpolation in time to accurately map coordinates
through each epoch.

Figure 17 shows that the new AACGM coefficients do
extremely well at reproducing the AACGM coordinates of
this location, which is in the SAA sector. The top panel of
Figure 17 shows that errors are <1 km in great circle dis-
tance for the new AACGM coefficients, while they are >10
km for all but a few years when using the old AACGM coef-
ficients and even exceed 100 km in earlier years. Note that
differences in the AACGM longitude also contribute to the
overall error that is shown in the top panel. The AACGM
latitude is shown in the bottom panel because of its relative
importance in organizing ionospheric and magnetospheric
processes.

8. Summary

The accuracy to which the current AACGM coefficients
produce the actual AACGM coordinates has been investi-
gated. Developments in the technique used to obtain the
AACGM coefficients have focused on the equatorial and
SAA regions, where the AACGM coordinates are not de-
fined, and on increasing the altitude range over which the co-
efficients are valid. These developments have led to apparent
inconsistencies in the various 5-year epoch sets of AACGM
coefficients. Furthermore, emphasis on defining AACGM co-
ordinates with alternative coordinates in regions where they
are undefined, the so-called forbidden regions, have led to
coefficients that are less accurate in middle to polar regions,
where these coordinates were originally intended for use.

Taking the approach that the AACGM coefficients should
replicate the AACGM coordinates to the best possible ex-
tent, particularly in the middle to polar latitude regions, a
new set of AACGM coefficients has been produced for the
years 1965–2015. These new coefficients are shown to be a
significant improvement over the existing coefficients, with

Figure 17. AACGM latitude at 600 km altitude of fu-
ture SuperDARN radar site located in the Azores. Red
indicates the AACGM coordinates determined from the
various IGRF models. Blue and green indicate the results
using the current and new AACGM coefficients. Linear
interpolation in time has been used for the new coeffi-
cients. Errors in great circle distance are shown in the
top panel for the two sets of coefficients.

errors in great circle distance limited to a few kilometers
over most of the globe, with the exception of a band of a
few degrees in latitude near forbidden regions. The corre-
sponding AACGM inverse coefficients also show improve-
ment over the existing coefficients, however errors are larger
(tens of kilometers) due to the discontinuous nature of the
AACGM latitude coordinate near the equator, particularly
in the SAA sector.

A software package has been developed for use with these
new coefficients. In addition to improved accuracy in the
middle to polar latitude region, the ability to use the more
accurate, albeit computationally slower, magnetic field-line
tracing has been included. It is now possible to limit errors
to ∼1 km for transformations to and from geographic and
AACGM coordinates.

In order to maintain sufficient accuracy throughout the
altitude range that includes LEO, the altitude range over
which the new coefficients are valid is limited to 0–2000 km.
Above this altitude, field-line tracing can be used for trans-
formation between coordinates.

A simple linear interpolation between coefficients that are
defined at 5-year intervals has been implemented. The inter-
polation scheme eliminates additional errors associated with
the 5-year update interval and leads to coordinates vary-
ing smoothly in time over the entire time-period for which
AACGM coordinates are now defined: 1965–2015.

It is the intent of this work to provide a more trans-
parent, consistent and accurate description of AACGM
coordinates and the limitations associated with various
functional approximations used in their representation.
The new coefficients and software package provide a
means for more accurate determination of AACGM co-
ordinates, and their inverse, leading to more consistent
mappings in the near-Earth space environment. Coeffi-
cients, software, and future updates are made available at
http://engineering.dartmouth.edu/superdarn/aacgm.html and
as supporting information.
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